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Preface

This book represents in the first place the desire of the authors of the various
contributions to enter a discussion about the research landscape of present-
day fundamental theoretical physics. It documents their attempt, out of their
highly specialized scientific positions, to find a way of communicating about
methods, achievements, and promises of the different approaches which shape
the development of this field. It is therefore also an attempt to bring out
the connections between these approaches, and present them not as disjoint
ventures but rather as facets of a common quest for understanding.

Whether in competition to each other or in collaboration, the ‘many-fold
ways’ of contemporary physics are characterized by a number of exciting
findings (and questions) which appear more and more interrelated. Moreover,
in the historical development of science, the steadily arriving new empiri-
cal information partly supports, partly contradicts the existing theories, and
partly brings forth unexpected results forcing a total reorientation upon us. If
we are lucky, the beginning of this century may prove to be as grand as that
of the last one.

It is not an easy task in a situation so much in movement and in which
various approaches strive for completion, to promote a constructive interaction
between these and to achieve a level of mutual understanding on which such
an interaction can be fruitful. Nearly all of the authors contributing to this
book have been participating in a working group dedicated exactly to this
task; this group met in many sessions over several years. This book is to a
large extent the result of these discussions.

The support of the authors’ home institutions was of course important
for this project, but one institution has to be singled out for making this
book possible: this is FESt, Heidelberg (Forschungsstätte der Evangelischen
Studiengemeinschaft – Protestant Institute for Interdisciplinary Research).

FESt has a long tradition in bringing together interdisciplinary working
groups. In particular, it has cultivated the dialogue between the natural sci-
ences, philosophy, theology, and the life sciences – but also projects inside
one discipline which involve discussion across the specialized fields and aim
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at a more general understanding of fundamental questions pertaining to this
discipline. Our work has constituted a FESt project belonging to this class.

The intention of working groups at FESt typically is not only to present
the differing perspectives but also to compare them and to find relations
which could be fruitful for the fields involved. To achieve this goal, numerous
group sessions are required and FESt provides hereto a unique scientific and
organizational environment. This has been extremely useful for our project
and we are very grateful to FESt for its support of our work as well as its
continuous interest and confidence in it.

We appreciate very much the interest of Springer-Verlag in promoting the
interdisciplinary exchange of information at the level of specialists. We thank
Wolf Beiglböck for excellent advice and assistance in the completion of the
book and the Springer team for dedicated editorial and publishing work.

Hans-Günter Dosch
Jürgen Ehlers

Klaus Fredenhagen
Domenico Giulini

Claus Kiefer
Oliver Lauscher
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Thomas Mohaupt
Hermann Nicolai

Kasper Peeters
Karl-Henning Rehren
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Michael G. Schmidt
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Introduction – The Many-Fold Way
of Contemporary High Energy

Theoretical Physics

E. Seiler1 and I.-O. Stamatescu2

1 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),
80805 München, Germany
ehs@mppmu.mpg.de

2 Forschungsstätte der Evangelischen Studiengemeinschaft (FESt),
Schmeilweg 5, 69118 Heidelberg, Germany
and
Institut für Theoretische Physik, Universität Heidelberg,
Philosophenweg 16, 69120 Heidelberg, Germany
stamates@thphys.uni-heidelberg.de

This book is trying to give an introductory account of the paradigms, meth-
ods and models of contemporary fundamental physics. One goal is to bring
out the interconnections between the different subjects, which should not be
considered as disjoint pieces of knowledge. Another goal is to consider them
in the perspective of the quest for the physics of tomorrow. The term ‘assess-
ment’ in the subtitle of our book is not meant as a comparative judgment but
as a recognition of the state of the art. This also means that achievements,
problems and promises will be touched in the discussion, as well as relations
and cross-references.

The chapters in this volume are written in a style that is not very tech-
nical and should be intelligible by a graduate student looking for direction
for his further studies and research. For established physicists they may help
to remind them of the general context of research and may be an incentive
to a look over the shoulder of the neighbor. The various chapters are written
by authors who are workers in the respective fields and who are, unavoid-
ably, of somewhat diverse character, also as far as the level of technicality is
concerned. The following introduction is meant to sketch the frame in which
these contributions are conceived, to offer some help in understanding the re-
lationship between the different chapters and give the reader some guidance
to their content.

This book is about the physics of the fundamental phenomena. This in-
cludes the physics of elementary particles, also known as high-energy physics,
but also gravity and therefore the physics of space and time. The landscape of

E. Seiler and I.-O. Stamatescu: Introduction – The Many-Fold Way of Contemporary High

Energy Theoretical Physics, Lect. Notes Phys. 721, 3–18 (2007)

DOI 10.1007/978-3-540-71117-9 1 c© Springer-Verlag Berlin Heidelberg 2007



4 E. Seiler and I.-O. Stamatescu

present day theoretical physics ranges from the standard model (of elementary
particles) to the cosmological standard model, and the empirical information
is at first interpreted in this conceptual framework (even though eventually
it might require to go beyond it). The first and the last chapters of the book
were chosen to indicate this span.

The term “fundamental” should be understood objectively. Physics re-
search is a very broad enterprise and even if we restrict the view to the
research not directly related to applications, fundamental phenomena make
up only one among many directions: complex systems, laser physics, quan-
tum information, solid state physics, atomic physics, nuclear physics, bio-
physics, astrophysics are only a few keywords to suggest the width of the
research spectrum. The word “fundamental” implies in no way a judgment
of importance. Sure enough, all the above fields introduce their own con-
cepts and methods which allow genuine progress of our knowledge. On the
other hand, any field of physics is dependent at a certain level on our
understanding of the fundamental phenomena at this level. Laser physics or
superconductor physics presupposes electrodynamics and quantum mechan-
ics, nuclear physics is based on the interactions of the standard model (strong,
weak and electromagnetic), solid state physics on statistical mechanics. One
cannot say when and where new insights concerning the fundamental phe-
nomena will enter other fields or, even more probable, form the basis of
new ones, since this always has involved many other factors: quantum in-
formation and quantum computation, for instance, have arisen as important
reasearch fields half a century after their quantum theoretical basis had been
available.

The contemporary momentum in physics research appears to be reduc-
tionist unification in the physics of fundamental phenomena, and perfec-
tionist diversification in the other fields. These can be seen as different
components of the general research momentum, seemingly adequate each to
the corresponding task, as suggested by the historical development. But even
if committed to one or the other perspective, research has always been (will-
ingly or unwillingly) critical enough to incessantly question the justification
of the chosen approach and we can witness non-reductionist suggestions in
the theory of fundamental phenomena as well as reductionist trends in, say,
biophysics.

Finally we should note that in this book, experiment is not addressed
directly, but only in the discussion of the empirical basis of the various theo-
ries. But this is by far not all that experimental physics is. In fact, the latter
has its own momentum and task, which is not only to corroborate or falsify
theories: it is by its independence that experiment can prompt the new in
physical knowledge, and produce findings not “ordered” by any theory.3 The
restricted scope of this book does not allow a presentation of experimental

3 “Who ordered that?” Nobel-prize winning physicist I. I. Rabi is said to have
exclaimed over the discovery of the muon.
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research, but the reader should be convinced that the latter stays in the
background of all discussions.

We should also note that even in the restricted frame of the book
there can be no claim of an even approximately exhaustive overview: many
developments have not been described, or were only slightly touched. We do
think, however, that we have collected here an essential part of the theoretical
discussion, although the dynamics of the conceptual developments can hide
many surprises.

1 Historical Remarks

Physics in the early 20th century saw two great revolutions: the development
of the theories of relativity and quantum theory. Relativity actually involved
two separate revolutions: special and general relativity.

The rest of the 20th century was largely concerned with working out the
theories by building concrete models based on them, applying them to various
physical problems and testing their predictions.

Soon it became clear that there are severe problems of compatibility be-
tween those theories; initially they referred to different regimes of physics but
eventually the regions where they overlap could not be avoided, and the search
for some more general theory combining and reconciling the theories valid in
those different regimes could not be avoided.

The first such unification did not so much raise conceptual as technical
problems: it was the unification of special relativity with quantum theory re-
sulting in the highly successful structure of quantum field theory. Its success
is typified by the extremely precise agreement between theory and experi-
ment in quantum electrodynamics that began to emerge in the 1950s and is
still being improved; this gave people confidence in the scheme of quantum
field theory.

After this success, the story continued with the search for unification
not so much of the theoretical frameworks of relativity and quantum theory
but rather of the three different interactions that fit into the framework of
(special) relativistic quantum field theory: the electromagnetic, weak and
strong interactions. Unification between the first two was achieved with great
success in the 1960s and 70s; the resulting electroweak theory has become
a pillar of the standard model, which combines the electroweak theory with
quantum chromodynamics (QCD) describing the strong interaction. The stan-
dard model is described in detail in the first chapter of Part II of this book.
Models unifying all three non gravitational interactions, so-called grand uni-
fied theories (GUTs) were proposed soon after, but with less convincing
success.

The theoretical basis for present day physics of fundamental phenomena
consists of quantum field theory and general relativity. Their main ideas are
presented in Parts III and IV of this book, respectively. However, a serious
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compatibility problem arose as people tried to bring gravity in the form of
general relativity into the game. Intractable technical problems appeared,
which had to do with the fact that any attempt to quantize general rela-
tivity introduces an intrinsic length scale (the ‘Planck scale’) that appears to
make the interaction strength grow beyond all bounds as one goes to short
distances or high energies. But even more serious is the conceptual clash be-
tween general relativity and any form of quantum theory: The main insight
of Einstein’s general relativity was the change of the role of space and time
from a passive ‘arena’, in which physics takes place, to an active dynamical
entity that is shaped by matter and acts back on it; but space-time remained
a sharply defined classical object.

On the other hand, all interpretations of quantum theory and especially
the measurement process, use space-time, and in particular time as something
given, and even treat the future different from the past in such concepts as
the ‘reduction of the wave packet’ (in the most common interpretation) or
the ‘splitting of worlds’ (in the ‘Many Worlds’ interpretation). But anything
of a dynamical nature in quantum theory also shows its typical non-classical
behavior, described in somewhat simplistic terms as ‘uncertainty’, making
uncertain the very arena in which the dynamical evolution of matter is to
take place. Combining the ideas of quantum theory with those of general
relativity leads unavoidably to fundamental conceptual difficulties and we
think it is fair to say that they have not yet been resolved in any of the
approaches.

But physicists are not easily deterred from trying the impossible: Various
approaches to quantum gravity have been pursued with great vigor in the
last few decades. On the one hand there are approaches that try to ‘quantize’
general relativity as a separate theory; these are described in Part V. On the
other hand there is the even more ambitious project to construct a ‘theory of
everything’ (TOE), describing all the forces of nature in a unified form. This
has been the goal of string theory or M-theory, to be discussed in Part VI.
Both these approaches have brought a wealth of new concepts and new views
on the structure of space time and of matter.

If one is more modest, a lot can be learned by combining general relativity
and quantum field theory in a less theoretically ambitious way by keeping
gravity classical and therefore providing the arena for particle physics in the
form of quantum field theory. This is pragmatically justified as long as the
length scales involved are reasonably distinct. The astounding progress of
physical cosmology in the last few decades was made possible by this prag-
matic approach; the fact that many of its aspects are directly related to recent
observations, makes this one of the most exciting areas of present-day physics
(Part VII).

In the following sections we shall discuss some of these problems in
more detail.



Introduction 7

2 Systematic Considerations

2.1 Quantum Theory and Special Relativity

As mentioned above, the marriage of special relativity with quantum theory
led to the structure of quantum field theory. This structure, though almost
seventy years old, is still the most important paradigm for elementary particle
physics. The general structure of quantum field theory, its status, concepts
and their limitations, are discussed by K. Fredenhagen, K.-H. Rehren and
E. Seiler (Part III).

There are different approaches, which can be labeled in short as
‘axiomatic’, ‘constructive’ and ‘perturbative’. The purpose of the axiomatic
approach is to gain structural insights and identify properties shared by all
quantum field theories obeying the respective systems of axioms. For the phe-
nomenological applications the perturbative approach is by far the most rele-
vant one; its success depends on the method of renormalization of parameters,
which removes the infinities that were present in the early, naive versions of
the theory. Finally the constructive approach on the one hand tries to con-
struct in a mathematically rigorous way quantum field theories satifying the
axiom systems. On the other hand, in the form of lattice gauge theory it plays
an important role in understanding the strong interactions, in particular the
formation of hadrons as bound states and the very essential concept of the
confinement of quarks inside the hadrons. Furthermore it opens the way to an
application of the concept of renormalization in a non-perturbative and, in a
certain sense, intuitive way, as integration over degrees of freedom which are
irrelevant at a given scale.

The timeliness of the research in this field is also certified by the obser-
vation that many of the essential concepts – from renormalization group, to
nonabelian gauge symmetry, confinement, Higgs mechanism – have been built
in the course of time until recent days, and new conceptual developments,
such as the so-called ‘holographic principle’, explicitly involve quantum field
theory at the same time as quantum gravity and string theory.

The relation to other subjects such as general relativity (gravity) and string
theory is discussed briefly in the mentioned chapter; in particular, it contains a
discussion of quantum field theory in curved space-times, considered as fixed
backgrounds, neglecting the back-reaction of the fields on space-time. This
pragmatic approach has seen much progress in recent years.

The other aspect of quantum field theory is its application to describe
high energy physics. Part I of this book deals with the practical (‘phenomeno-
logical’) use of quantum field theory: first H.G. Dosch describes the so-called
standard model of elementary particle physics. This model is extremely suc-
cessful in giving a quantitative account of all known particles and their inter-
actions. In fact it is so successful that many physicists are desperately hoping
for some disagreement with experiment to show some hints of ‘new physics’.
One of the hopes is of course that the ‘Large Hadron Collider’ (LHC), which
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should become operational next year at CERN in Geneva, will show such
deviations from the standard model.

The interpretation and parametrization of such deviations (if they occur)
requires models or theories that go beyond the standard model, since ex-
perimental data can never be interpreted without a theory. The chapter by
M. Schmidt gives an overview of some of the ideas in this direction that are
currently under consideration. All of them predict additional particles which
so far have not been observed; the appearance of such particles at the LHC,
it is expected, would help to narrow down the possibilities of such extended
theories.

There are other reasons why physicists are not ready to accept the standard
model as the last word on elementary particle physics: Cosmology, as discussed
in Part VII, seems to require the existence of additional particles which do
not have electromagnetic interactions (so-called dark matter) and moreover
the mysterious ‘dark energy’. It is hoped widely that the LHC will also shed
some light on the question of dark matter by discovering some of the particles
that might constitute it.

Finally there is a philosophical and esthetic reason for the search of a more
fundamental theory: the standard model has at least 19 parameters, whose
values should be explained in a truly fundamental theory. String theory, at
least in the earlier stages of its development, seemed to offer the hope to
determine some or all of these parameters; but lately there has been a shift
away from this goal in (part of) the string theory community (see Part VI),
where those parameters are now considered as contingent or environmental,
roughly like the distance of the earth from the sun. But this view is by no
means generally accepted even among string theorists; for most physicists
the search for a theory explaining all or at least most of the free parameters
remains on the agenda as a central goal of fundamental research.

To sum up the situation regarding the unification of special relativity with
quantum theory, it can be said that it has been understood conceptually
within the axiomatic approach and made practically useful by renormal-
ized perturbation theory and numerical lattice gauge theory. But there are
open mathematical problems: mathematically rigorous constructions of real-
istic quantum field theories, obeying one of the axiomatic schemes, have not
been accomplished. This is the reason why the Clay Mathematics Institute of-
fered a prize of one million dollars for a mathematically rigorous construction
of a simplified version of quantum chromodynamics with the right physical
properties.

2.2 General Relativity

As mentioned above, the crucial insight of Einstein’s theory of gravitation
known as general relativity (GRT) is that space-time no longer serves as a
passive arena in which events take place, particles scatter, are created and
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annihilated, fields propagate, but rather all matter (every field) acts back on
space-time, shaping it as it evolves.

Space-time becomes a dynamical object, not fundamentally distinct from
matter. The classical theory of general relativity has been extremely successful
in describing the world on a macroscopic scale up to farthest reaches of the
observable universe. It even plays a role in mundane applications such as
navigation systems in cars, which are based on the global positioning system
(GPS). Without the use of general relativity, the GPS would accumulate an
error of about 10 kilometers per day.

The chapter by J. Ehlers (Part IV) gives a concise introduction into the
concepts and structure of classical general relativity. One of the characteristic
features of that theory, which is invoked frequently, is the so-called ‘general
covariance’ or ‘diffeomorphism invariance’. Superficially this just means that
one can use whatever coordinates or frames of reference one likes to describe
the joint evolution of matter and space-time in formally the same way. But
on closer inspection this statement may turn out to be, depending on how
one interprets it, empty or false. In fact it is quite subtle to give a precise
and correct meaning to the statement of general covariance or background
independence, as it is sometimes called. This difficult issue is discussed in
depth by D. Giulini (Part IV).

Beyond leading to the description of novel phenomena, such as the bending
of light rays or the existence of black holes, there is one outstanding interest
of general relativity: it provides space-time solutions which provide the basis
for models of the universe. This leads directly to the discussion in Part VII.
Cosmology is the scene for the collaboration (though not unification) of our
most evolved theories: quantum field theory and general relativity. It is in
fact a very fruitful scene, since new concepts at the interface of classical and
quantum physics have been developed here and a great amount of empirical
data has been obtained to guide the theoretical development.

2.3 Quantum Theory and General Relativity

The existence of quantum matter and the fact that this matter acts on space-
time seems to make it unavoidable to assign quantum nature also to space-
time itself. But, as said before, this leads to extremely hard technical as well as
conceptual problems. On the other hand, the quantum nature of space-time,
whatever this means precisely, should only become relevant at energy scales
of the order of the Planck energy, which is 16 orders of magnitude above
the highest accelerator energies. So a pragmatic approach is just to ignore
the problem of unifying gravity with the other interactions. An even more
extreme standpoint has been taken by the famous physicist Freeman Dyson4:
he argued that the ‘division of physics into separate theories for large and

4 in his review of Brian Greene’s bestseller ‘Fabric of the Cosmos’ (New York
Review of Books, May 13, 2004).



10 E. Seiler and I.-O. Stamatescu

small’ is acceptable and a unification not necessary. However, most physicists
disagree with this point of view, and the chapter by C. Kiefer (first chapter
of Part V) explains why.

Before entering into the dangerous waters of quantum gravity, one can
study a useful domain in which matter is treated quantum mechanically, but as
far as its effect on space-time is concerned, only classical, large-scale properties
of matter are considered. This is the regime where modern astrophysics and
physical cosmology have their place; this has been an extremely active domain
of research in the last decades. The beauty of this field is, as mentioned be-
fore, that it shows a very strong interplay between observations and theory, so
theoretical predictions can actually be checked and have been checked with im-
pressive success, using the satellite data on the cosmic microwave background.
A discussion of some of the central aspects of modern cosmology is contained
in the chapter by N. Straumann (Part VII); this chapter emphasizes in par-
ticular the problem of the so-called ‘dark energy’ or ‘cosmological constant’,
which according to astronomical observations seems to pervade our universe.

Another preliminary way to join general relativity and quantum theory is
the treatment of a general relativistic space-time as a fixed background arena
for quantum field theory, neglecting the back-reaction of the quantum fields on
space-time. This should be appropriate under certain circumstances, such as
the situation where few particles (or particles of low density) are described in
gravitational fields of large objects such as stars, galaxies, or even the universe
as a whole; as remarked, this subject is discussed in Part III.

The really hard problem of quantum gravity is the subject of Part V; Part
VI, which deals with string theory, could also be subsumed under this heading.
This subject may seem to take a disproportionally large fraction of this book;
this is so because of its fundamental importance as well as its difficulty, both
technically and conceptually. This question has therefore been the focus of a
large part of modern physics research.

The fundamental difficulty of a marriage between quantum field theory
and general relativity, as alluded to before, lies in the totally different roles
played by space-time, and time in particular, in the two frameworks. Any
quantum theory treats and needs time as an external parameter, in order to
give an interpretation in terms of measurement results. In general relativity,
space-time is shaped by the evolution of matter, hence if matter behaves quan-
tum mechanically, so will space-time. This fact leads almost unavoidably to
such concepts as the quantum state or wave function of the universe, which
would elevate the Schrödinger cat paradox to cosmic dimensions. In its stan-
dard interpretation quantum theory needs the concept of measurement, and
it is hard to see what this would mean for the universe as a whole, therefore
the interpretation of a wave function of the universe remains murky. Many
researchers therefore are drawn to a ‘many worlds’ (better: many observers)
interpretation which, again, is not free of conceptual problems.

In spite of these unresolved difficulties, it is legitimate to go ahead and
try to construct something like a quantum field theory of gravity (or even of
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all interactions) and postpone the problems of interpretation to a later day.
A rather direct approach is the so-called ‘canonical quantization’ of gravity,
whose principles are described in the chapter by C. Kiefer and D. Giulini
(Part V).

The starting point is that classical general relativity can be cast into the
form of canonical field theory, in which the dynamics takes place in some
phase space parametrized by coordinates and momenta; these then can be
subjected to canonical quantization, the procedure that was so successful in
non-relativistic quantum mechanics.

The situation is complicated by the way in which the classical system
is constrained due to the general covariance of Einstein’s equations. While
such contraints already occur in gauge theories, such as the ones occurring
in the standard model, here the situation is more serious: the Hamiltonian
that should generate the evolution of the system is just a combination of con-
straints. This leads, after quantization, to the peculiar situation that, unlike
in ‘normal’ quantum systems, physical states (‘wave functions’) have to be
annihilated by the Hamiltonian. So there appears to be no evolution with
respect to an external, given time. Of course this makes sense, because gen-
eral relativity does not contain such an external time. Upon closer inspec-
tion, however, it seems possible to recover something like an evolution with
respect to an ‘intrinsic time’. The issues related to the ultraviolet problems
(i.e. perturbative non-renormalizability) of canonical quantum gravity are not
discussed here; they are addressed in different ways in the following three
chapters (Part V).

After the discussion of the general ideas of canonical quantum gravity by
Kiefer and Giulini, H. Nicolai and K. Peeters give an introductory account to
so-called loop and spin foam quantum gravity. Loop quantum gravity is an
elaboration of the canonical approach discussed before, whereas the spin foam
formulation of quantum gravity is trying to avoid the different treatment of
space and time inherent in that approach. This presentation is given by ‘out-
siders’ to the subject, i.e. physicists who mostly worked on other subjects
(strings in this case) but studied the loop and spinfoam approaches, to under-
stand its advantages as well as its problems. One advantage of this ‘outside’
view may be the pedagogical style of this ‘brief guide for beginners’, as the
authors call it. The presentation by Nicolai and Peeters also raises some crit-
ical questions about the prospects of the enterprise; some of these questions
are addressed or answered in the following chapter by Thomas Thiemann.
Reading both chapters should make it possible to form an educated opinion
about the loop approach.

T. Thiemann then gives a moderately technical account of loop quantum
gravity. This chapter is written by an ‘insider’, that is a physicist who has
intensely worked on this subject. As remarked, the approach is an elabora-
tion of the canonical approach discussed before, striving for mathematical
rigor. Partly this has become possible by the introduction of more appro-
priate canonical variables (the ‘Ashtekar variables’). The word ‘loop’ in this
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approach refers to the fact that (at least on the kinematical level) the ba-
sic coordinates are parallel transporters along curves, and the correspond-
ing momenta are ‘electric fluxes’ through two-surfaces bordered by closed
curves. A special feature of the approach is the appearance of a non-separable
(i.e. having uncountably many dimensions) ‘kinematical Hilbert space’ which
is supposed to collapse to a separable one (as is physically desirable) by
imposing the constraints.

The main virtues of loop quantum gravity may be listed as first of all back-
ground independence, secondly existence of length, area and volume operators
with discrete spectra, and finally the possibility to couple other field theories
(‘matter’) to this form of quantum gravity. The first property means that
no given, prescribed space-time geometry is present, in accordance with the
crucial property of classical general relativity stressed repeatedly. The second
one is interpreted as a sign that at distances of the order of the Planck length
the usual continuous manifold structure of space-time disappears (but ques-
tions of interpretation of these quantized space-time structures remain). The
discreteness at the Planck scale also offers hope for an effective physical cutoff
in other, non-gravitational theories, which can be coupled to loop quantum
gravity. The great difficulty of this approach is to understand the emergence
of a classical space-time, as we experience it, at distances large compared to
the Planck length.

A totally different approach has been taken by O. Lauscher and M. Reuter
(also in Part V). Again the goal is to quantize gravity ‘in isolation’ and to
overcome the main technical obstacle, the alleged nonrenormalizability of the
theory due to the presence of a coupling constant with positive length dimen-
sion (given by the Planck length). The idea, in short, is that this problem is
entirely due to the conventional treatment, which is based on perturbation
expansion in the coupling constant. It has been known for a long time that in
quantum field theory perturbatively non-renormalizable models may turn out
to be renormalizable, once treated non-perturbatively. Steven Weinberg has
coined the term ‘asymptotic safety’ for this phenomenon and it is the thesis
of the chapter that this is indeed what happens in quantum gravity. Since
nobody can actually solve the theory exactly, the authors collect evidence in
favor of this scenario from approximations which are distinct from the usual
perturbative ones.

2.4 String Theory

The most ambitious approach to quantum gravity is the enterprise variously
known as ‘String Theory’, ‘Superstring Theory’ or ‘M-Theory’. In Part VI
J. Louis, T. Mohaupt and S. Theisen give an overview over this vast subject.
We will call it generally ‘String Theory’ here, like these authors do.

String theory has a peculiar history: it started out as a theory of the strong
interaction around 1970, going into hibernation with the advent of quantum
chromodynamics as the part of the standard model describing the strong
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interaction, and re-emerged in the mid 1980s as a ‘theory of everything’, that
is all interactions including gravity. This came about because the originally
unwanted massless spin two particle appearing in string theory was identified
with the graviton (hence the saying that string theory implies gravity) and the
realization in 1984 that there was a version in which all anomalies canceled
and apparently a theory free of ultraviolet divergencies emerged.

Ever since then, string theory has been the most popular area of funda-
mental research, attracting a huge number of young and talented theoreticians
as well as the support of many influential senior physicists and being in par-
ticular shaped by Edward Witten, who is recognized as the leading figure
in present-day mathematical physics. Like the ancient Greek hero Proteus,
string theory has gone through many metamorphoses. Originally it was really
considered to be a theory that replaced the points appearing as formal argu-
ments of fields by extended strings (this is often not quite correctly phrased as
the replacement of ‘point particles’ by strings), whereas later it was sprouting
‘branes’, that is submanifolds of various other dimensions, and then it was
even discovered that it was ‘dual’ to an 11-dimensional supergravity (a quan-
tum field theory). The discovery of various dualities between different versions
of string theory and that field theory was considered as a major breakthrough,
since it suggested the existence of a unifying theory, dubbed ‘M-Theory’ by
Witten, behind all this.

The physical results expected from the theory also evolved over time:
initially it was hoped that one could eventually predict in a more or less
unique way the standard model (or some extension of it) as a low energy ap-
proximation. This hope was not fulfilled and today the currently dominating
view is that it has an incomprehensibly large number (10500 is often quoted)
of ‘vacua’, each corresponding to a world with different physics, making the
parameters of, say, the standard model, merely contingent or accidental facts
of the universe we are living in, much like the distances of the planets from
the sun.

String theory is not a closed theoretical structure with fixed concepts
and axioms, but an evolving enterprise; somebody even proposed to define
it simply as follows: ‘String Theory is what string theorists do’. The chap-
ter by Louis, Mohaupt and Theisen describes the evolution of the theory
methodically, but the different steps described roughly follow the historical
development.

One aspect of string theory is that it led to strong interaction between
mathematicians and physicists. Its influence on mathematics can be seen
by the frequent appearance of the name ‘Witten’ in various mathemati-
cal contexts, such as the ‘Seiberg-Witten’ functional or the ‘Gromov-Witten
invariants’ (for instance, in the work of the 2006 Fields medal winner
A. Okounkov) or, most importantly, by the awarding of the Fields medal
to Witten himself in 1990.

One criticism that is leveled against string theory as a proposed the-
ory of quantum gravity is its dependence on an unquantized background
geometry, serving again as the arena in which the dynamics unfolds. String
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theory replies that this is only apparent, since the split between the classical
background and the quantized fluctuations around it is arbitrary; while this
seems at first sight to imply that the topology of the background is still fixed,
there are some proposals how string theory might provide a context for fluctu-
ations of topology as well. It is also hoped that full background independence
should become manifest in a future ‘String Field Theory’. The debate about
this issue, mostly between loop quantum gravity and string theory can to
some extent be followed in this book by comparing the chapters dealing with
these subjects.

It is clear from this brief discussion that there is no unique current
paradigm, but there are some competing and even conflicting paradigms that
have to be explored much further, before a consensus may be reached. It is
appropriate to stress at this point that, in spite of all diversity and even con-
tradiction among the various approaches towards a fundamental theory of the
future, as testified by this book, there is a broad agreement about the estab-
lished physics in which such a theory has to be rooted. The development of any
new theory must take into account the huge amount of accumulated empirical
evidence, since the ultimate judge for a theory will always be the experiment.
Any future theory also must retain contact with the present theories which
successfully describe these empirical data, and build upon the conceptual base
offered by these theories since – according to the experience we have until now
– a superseding theory will indeed contain successful partial theories in some
well-defined ‘limit’.

As remarked, the subject of quantum gravity suffers from the problem that
it is beyond any direct contact with experiment or observation now and will
arguably remain so in the foreseeable future. Nevertheless it is to be hoped
that eventually also Nature itself will be kind enough to help us decide. Until
then we have to rely on exploring the internal consistency and predictive
power of the different approaches and also try to stay aware of their mutual
interdependence.

3 Conceptual Questions

One cannot be unaware of the interpretational and conceptual problems raised
by the developments of modern physics. While these are not directly the
matter of the normal physics research they find their way into the philosophy
of science discussion – and color the books for the general public written by
well-known physicists.

There are essentially two scenes in which these problems are raised: the
forming of our concepts and the character of our knowledge with reference to
reality.

In building up our concepts we normally proceed by extending older ones
and redefining them in new theoretical schemes. So, for instance, we took
the concept of particle from classical physics over to quantum mechanics and
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to quantum field theory while changing it in major ways. In doing this we
increasingly departed from the classical intuition, which is strongly webbed in
our everyday life. Most of the concepts of present-day physics are mathemat-
ically based, both in geometry (branes, loops) and in analysis (Lagrangians,
Hilbert spaces, operators, group representations). It may be an interesting
question to ask: what kind of general new intuitions, both physical and math-
ematical do we construct in this way?

One of the notions related to forming concepts is that of effective or
approximate conceptual schemes. Let us consider, e.g. the concept of electron.
We can mean by this the electron of classical electrodynamics, of quantum
mechanics, or of quantum electrodynamics. To the extent we want to consider
them to be related to each other we must use the notion of effective theory. In
fact this notion is very powerful and allows us to unambiguously define lines
of relationship: there is no need to look for some kind of similarity, what we
need is to establish the procedure by which a well-defined approximation is
realized – both mathematically and as the definition of a physical situation.
So, for instance, we can speak of the classical electron as decohered quantum
object: both the physical situation and the mathematical derivation are well
defined. Another example is that of space and time: there are very different
intuitions related to these concepts in the various theoretical schemes and the
contact between them can be less based on following these intuitions but more
on their binding in a fundamental vs effective setting (asymptotic flatness in
general relativity models, for instance). An enlightening construction in this
process is Wilson’s renormalization group. Normally this construction shows
a unique direction, from small to large scales, but it in fact is defined more
generally in terms of identifying relevant degrees of freedom and averaging (or
integrating) over the irrelevant ones.

The other scene for the discussion is the character of our knowledge. If we
leave aside the ‘postmodernist’ views, and since the a priori stance of critical
idealism is difficult to bring into agreement with modern physical knowledge,
the main argument seems to go between some kind of positivist, empiricist
or instrumentalist positions on the one hand, and some kind of realist or
fundamentalist positions on the other hand. It may be interesting therefore
to risk some brief comments on these issues.

Both kind of positions appear to have their advantages and disadvantages.
To insist on empiricism and demand that physics only be concerned with re-
lating and describing observations discards a lot of interpretational problems
but fails to account for the progress of the scientific process. To assume, on
the other hand, that we always have access to the ‘real thing’ cannot work,
unless, may be, we mean this in a ‘weak’ sense and qualify this access in
terms of effective and approximate concepts. So, for instance, the electron of
classical electrodynamics, quantum mechanics and quantum electrodynamics
cannot represent the same and therefore One real thing: Either we consider
them as ‘unfinished’, with the real thing behind being only suggested asymp-
totically by them, or we assume that they do point to real ‘manifestations’ of
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this thing which however depend on a certain frame – e.g. scale. Then we can
introduce a notion of continuity and progress, which is theoretically as well as
phenomenologically well defined: a typical event picture, for instance, shows
particle generation processes of quantum field theory, quantum mechanical
interaction with atoms and decoherence, and classical electromagnetic inter-
action with external fields all interrelated and in one shot (see Fig. 1).

The advantages or disadvantages we have been speaking of do not seem
to interfere with the dynamics of the physics research. A positivist, for in-
stance, may not be particularly uncomfortable with the many parameters of
the standard model, since for him reduction is not a question of explanation,
but only one of optimization in the reproduction of observations. Hence reduc-
tion is only good if it allows better predictions (in that sense the Copernican
model was, at the beginning, a failure). No new theoretical ansatz achieves
this. But also for a realist, who might be more eager to take a risk for the
sake of such criteria as simplicity, explanatory promises and faith in the exis-
tence of ‘laws of nature’ there is too much theoretical indefiniteness and too
little empirical support for any particular ansatz going beyond the standard
model to be convincing. Fortunately, however, there seems to be no way to
improve the acknowledged problems of the standard model the Ptolemaic way
and there is also the fundamental question of quantization of gravity which
is both of theoretical and empirical significance (in as much as cosmology is).
This raises enough uneasiness, independently of ‘philosophical’ position, to
motivate the quest for a superior theory.

Fig. 1. Bubble chamber event: production and decay of a D* meson in a neutrino
beam [CERN copyright; we thank CERN for the permission to publish this picture]
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Another aspect of this opposition is the discussion on truth and justi-
fication. Roughly said, an instrumentalist perspective would stay with the
justification concept, understood as internal and empirical consistency of the-
ories (with post-diction and prediction), while a realistic perspective would
ask for truth to be prompted by nature and incorporated in the theory. In the
first case empirical tests support or contradict a certain justification scheme
(in short, a theory), possibly asking for a new one – with hypothesis build-
ing being a qualified trial-and-error endeavor. In the second case one assumes
that the hypotheses are ‘conducted’ or inspired by empirical and conceptual
considerations and that the change in the justification (from one theory to
the next one) captures an element of ‘truth’. These seem to be just different
ways of talking, but reflect in fact different positions: are our concepts just
convenient but arbitrary instruments or do they follow some lines traced by
nature?

Now both perspectives appear difficult to follow to the very end. The
positivist attitude simply renounces of posing questions (as Born says, it does
not deny the existence of a ‘reality’, but it states that it is meaningless to speak
of it). Justification as introduced in this perspective appears insufficient since
it always remains one step behind in the process of development of physical
knowledge. If the scientific process is based only on justification one cannot
explain why this process seems directed – and as a result, of course, continuity
and directedness in this perspective is either denied or claimed to be only
historically (culturally, socially) generated.

On the other hand, a ‘strong’ realistic hypothesis also fails, since it needs to
accommodate contradictions. Such as, for instance, the clash between causal-
ity and a description with help of ‘elements of reality’ pointed at by the
Einstein–Podolsky–Rosen argument (generally, to assume ‘reality’ for the con-
cepts of quantum mechanics – e.g. for Hilbert space vectors – may be difficult
to secure against non-locality). Therefore a truth concept in the strong sense
is also problematic: it gets into trouble, it relies itself on metaphysical as-
sumptions, and in fact shoots beyond its aim, namely to explain the features
of the scientific process.

In fact, what we can only claim is that there seems to be evidence for
some kind of continuity and directedness of the scientific process and that
these features themselves have at least in part something to do with reality.
This too can be contradicted, but one may also feel that there are some good
arguments for this position. One class of arguments concern the evolution of
theories, with the trends, inclusions etc. which can be found here, and the way
our conceptual tools change and develop in this evolution – all indicating such
directedness and not supporting sheer disconnectedness. The other class of
arguments consider the alternatives, which, if followed to conclusion, all seem
to lead to diverging plurality – at the best in the sense of ‘one law for one
phenomenon’, at the worst in the postmodernist ‘social determination’ view.

In this connection it might be mentioned that some people would interpret
the ‘holographic principle’ as an adequate picture of the knowledge interface
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between us and the world (recalling the platonic metaphor of the shadows on a
screen). This may be an example of how physics tries to impinge on philosophy.
The conclusion of this discussion is then that philosophical considerations are
helpful from the point of view of understanding the world, but we should
not feel compelled to hastily draw philosophical conclusions from physical
conjectures, and this primarily for the sake of philosophy, not of physics.

Besides the above two questions – that of the forming of our concepts
and of the character of our knowledge – there are some more pragmatic ones
concerning the structure of our theories and which are especially relevant in
the context of the contemporary high energy physics research. So, for instance,
when do we speak of a theory, when do we consider to have it ‘under control’?
We may find different answers to this question in this book, and in fact we
may ask which understanding of it is assumed by a theory we are develop-
ing. A more special question may be whether we must expect any relevant
quantum theory to have a classical limit and whether we are able to find
quantum theories not by quantization of a classical precursor. Still another
question is: What impact on our understanding does the development of new
methodologies have – e.g. numerical simulations in quantum field theory?

We included this discussion here to suggest to the reader that these may
also be interesting questions to consider when reading this book.
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1 Introduction

Phenomenology of elementary particles is, since 1980, in an excellent state.
Presumably there are more physicists who complain that the standard model
is too good than those who complain that it is too bad. The reason for that
paradoxical behaviour is that the excellent agreement between theory and
experiment leaves little space for evidence of ‘new physics’.

Before I give an outline of the standard model of particle physics, I shall
shortly describe the development that lead to that model. This will be done
in an woodcut-like and therefore oversimplifying manner. The reason for this
historical introduction is threefold:

1. The historical development shows to what extend the present model meets
the expectations of a theory of elementary particles.

2. I do not believe that we can learn from history, from history of science
no more than from political history, but nevertheless history is the only
arsenal we have of realized possibilities in science.

3. I think it is adequate to emphasize in this book, which is mainly focused
on theoretical issues, the decisive role that experiment and especially the
interaction between experiment and theory has played in the development
of present-day particle physics.

2 The Development of the Standard Model

At the turn of the 19th to the 20th century two developments of physics
were evident. Firstly, the field theory of electric phenomena, as conceived
by Faraday and put in its final mathematical form by Maxwell, could not
be considered as a branch of mechanics in the sense Euler had developed
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mechanics of continua. Einstein even reversed the order: he took the symme-
tries of the Maxwell equations more serious than those of classical mechanics
and he thereby modified the latter to relativistic mechanics. Secondly, around
the same time there was evidence from statistical mechanics and atomic spec-
tra that classical mechanics had to be modified essentially at the scale of
atomic extensions, that is around a tenth of a nanometer. This first led to
the ‘old quantum mechanics’ initiated by Planck in 1900 and essentially ex-
tended by Einstein and Bohr. The ‘new quantum mechanics’ was originated by
Heisenberg in his paper on On quantum-theoretical reinterpretation
of kinematical and mechanical relations.1 Not even two months after
this paper was submitted, Born and Jordan formulated Heisenberg’s ideas in a
systematic way and at the end of their paper they made ‘the attempt, to fit the
laws of the electromagnetic field into the new theory’. They introduced matri-
ces, that is non-commuting operators, not only for the mechanical observables,
but also for the electric and magnetic field. The next essential step towards a
realistic quantum electrodynamics was due to Dirac (1927). He could already
rely on the interpretation given in a sequel to the paper of Born and Jordan,
the famous ‘Dreimännerarbeit’ (three-men paper) of 1925, where also Heisen-
berg participated. Dirac used his approach based on analogies of quantum the-
ory with higher mechanics and introduced annihilation and creation operators
for photons. Since he had the full dynamics incorporated in his approach, he
could give a dynamical derivation of the famous relation between the sponta-
neous and the induced emission coefficient, established by Einstein in 1916/17.
Dirac was emphasizing the particle character of the electromagnetic radiation
(photons), but in the same year Jordan and Klein, following in some respect
Dirac’s ideas, stressed the opposite, namely the field character of matter.
Jordan also realized that for fermion fields the commutation relations had to
be substituted by anti-commutation relations.

Two papers authored by Heisenberg and Pauli and published in 1929 can
be regarded as the first papers having the essential ingredients of relativistic
quantum field theory. They treated both the matter fields and of course the
radiation field relativistically. For the matter field they used the relativistic
wave equation found by Dirac, which shall be mentioned later several times.
They used the canonical formalism of classical field theory for the quanti-
zation procedure, in analogy to the application of the canonical formalism
of mechanics in establishing quantum mechanics. On their way they met a
tremendous obstacle: as a consequence of the Maxwell equations the conju-
gate field of the electric potential is zero. This and other difficulties made the
two silent for nearly a year, a very long period in a time where seminal pa-
pers were often separated by only a few weeks. The real breakthrough came
when they realized the importance of gauge invariance in quantum theory,
a feature first clearly recognized by H. Weyl and already stressed in his fa-
mous book Group Theory and quantum mechanics, the first edition of

1 For references, see remarks in the literature section.
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which appeared in 1928. So the main ingredients of quantum field theory were
found in a period of only four years and a few months after the first appear-
ance of new quantum mechanics. But further progress was by no means easy.
Heisenberg later remembers that in contrast to quantum mechanics quantum
electrodynamics became never simple. The mood of the early 1930s is caught
in his reminiscence:

In 23 and 24 we knew that there were difficulties and we also had the
feeling that we were quite close to the final solution of the difficulties.
. . . It was as if we were just before entering the harbor, while in this
later period we were just going out into see again, i.e. all kinds of
difficulties coming up.

I will not dwell on these difficulties mentioned, some of the most obstinate
ones are discussed in the contribution by Fredenhagen et al. to this book. The
outcome of the adventure on open sea was renormalized relativistic quantum
field theory, which governed large parts of physics for the rest of the 20th
century and is still going strong in the 21st.

Quantized field theory led in the sequel to a dichotomy with episte-
mological consequences. In the theoretical description the field concept is
the fundamental one, but on the other hand all our knowledge comes from
accelerated and detected particles. Only in perturbation theory is there a
clear-cut relation between particles and fields: the field quanta are the
(observed) particles.

Physics did not stop on the level of atoms. After the essential questions
of atomic spectra had been clarified, nuclear physics entered the scene. The
classical scattering experiments of Rutherford, Geiger and Marsden showed
that the atoms had a nucleus which was extremely small as compared to the
extension of the atom. The appropriate scale for the atom is the nanometer
(10−9 m), that of the nucleus the femtometer (10−15 m). Elementary particles
at the time were the electron and the proton, the nucleus of the Hydrogen
atom. There were good reasons to believe that the nuclei of the other atoms
were composite objects, their constituents being presumably protons and elec-
trons. There was strong evidence for such a hypothesis: The mass of a nucleus
was roughly an integer multiple of the mass of a proton and the charge was
also a multiple of the charge of a proton, therefore the difference between the
mass and charge number had to be explained by an extremely light negatively
charged particle, just the typical properties of an electron. Furthermore the
emission of electrons from a nucleus could be observed in the nuclear β-decay.

In β-decay there was, however, a serious problem. Chadwick and Ellis
(1914–1927) had found that the electron spectrum in that decay was not dis-
crete, as in the case of α-decay, but continuous. Furthermore there seemed for
certain decays to be a problem with the relation between spin and statistics,
if only one fermion was emitted. After Lise Meitner had, by her own experi-
ment, convinced herself and Pauli of the correctness of the results of Chadwick
and Ellis, Pauli found ‘a desperate way out’ from both problems: in β-decay
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not only an electron, but also another very light neutral fermion, later called
neutrino, is emitted.2

Besides these problems there were also some other serious difficulties to
reconcile the otherwise good phenomenological evidence of the picture of the
nucleus with theoretical principles. So it was not far fetched to assume ‘new
physics’ to set in at the scale of the atomic nucleus, that is at several fem-
tometer. Increasing the resolution by a factor of a million, that is from mil-
limeter to nanometer, had led from classical to quantum physics. Why should
a further factor of a million, that is going from nanometer to femtometer,
not also necessitate far-reaching modifications? The scale where new physics
should set in was generally considered to be the classical electron radius
re = α�/(mec) ≈ 2.8 fm.

The doubts that quantum physics could not be applied to scales much
smaller than the atomic ones even influenced the interpretation of experi-
ments. It was not clear that one could trust results obtained by quantum
electrodynamics, for instance for the energy loss of charged particles in mat-
ter, when the wavelength of the involved photons is of the order of a femtome-
ter. It turned out soon, however, that such a transition to ‘new physics’ was
not necessary and that quantum physics, as derived from atomic physics, also
applied to nuclear physics. Several experimental and theoretical findings con-
tributed to this insight. The α-decay of the nucleus was explained by Gamow
(1928) as a quantum mechanical tunnel effect. Part of the theoretical prob-
lems of electrons inside a nucleus were solved through the discovery of the
neutron by Chadwick (1932). It was immediately proposed (Heisenberg 1932)
that the nucleus consisted of protons and neutrons rather than of protons and
electrons.

In the same year local quantum field theory had its first spectacular
triumph: the antiparticle of the electron, predicted by Dirac in 1928, was
discovered in a cosmic ray experiment by Anderson. Though it was already
predicted on the basis of local interaction in relativistic quantum mechanics, it
is essentially a consequence of quantum field theory and can only be properly
accounted for in a quantum field theoretical framework.

The neutrino hypothesis of Pauli was incorporated by Fermi in his
quantum field theoretical description of β-decay (1933). In this theory the
occurrence of creation and annihilation operators for fermions was essential.

Though the interaction strength was very weak, the theory had problems
if one applied to it the procedures of perturbation theory used in quantum
mechanics.3 But on the other hand the lowest order (tree level) contributions

2 This was communicated in an open letter to the ‘radioactive ladies (L. Meitner
was present) and gentlemen’ at a meeting in December 1930.

3 These corrections were first derived in a truly mechanistic field theory, namely
the theory of sound by Rayleigh (1877), in quantum mechanics they were derived
by Max Born.



The Standard Model of Particle Physics 25

of Fermi’s theory were the basis for a very successful quantitative explanation
of many observed decay spectra.

The success of quantum field theory in the description of β-decay, that
is weak interactions, motivated Yukawa to develop a quantum field theory of
nuclear forces (1935). In some sense it was closer to electrodynamics than to
the Fermi’s theory and it predicted as quantum of interaction the existence
of a new kind of elementary particle, namely a massive particle with integer
spin, which was first called mesotron, later π-meson. The mass (Compton
wavelength) should be corresponding to the size of nuclei, that is several hun-
dred electron masses. A particle of such a mass was indeed discovered by
Neddermayer and Anderson (1937), it turned out later, however, that it could
not be the particle wanted for the Yukawa theory.

The discovery of the neutron had another very important impact on
theory: it initiated the concept of internal symmetries. Since the mass of
the neutron differs from that of the proton by only about 1 permill, Heisen-
berg proposed immediately a symmetry between the two particles, later called
nucleons. On the basis of results of nuclear spectroscopy and first precise mea-
surements of cross sections of proton–proton scattering, this theory was finally
developed into the theory of isospin symmetry (Condon, Kemmer, Wigner and
others).

The particle predicted by Yukawa, later called π-meson, was discovered in
1947 by Powell and collaborators, shortly after it had been shown that the
mesotron, the particle found by Neddermayer and Anderson ten years earlier,
did not have the properties to mediate strong interactions. The situation of
particle physics seemed in the middle of the 20th century to be in a similarly
good state as at the end of that century, though the standard model of that
time was completely different from the present one. The elementary particles
were the proton, the neutron, the electron, the neutrino(s) and, as particles
mediating the electromagnetic and strong interaction, the photon and the
π-meson, respectively. To that came a a particle, which ‘nobody had ordered’,
the muon, the former mesotron.

Quantum field theory turned out to be extremely successful. The problems
occurring by just transposing the concepts of quantum mechanics to quan-
tum field theory were solved by Dyson, Feynman, Gell-Mann, Schwinger and
Tomunaga in renormalized perturbation theory of quantum electrodynamics
(see ‘Quantum Field Theory: Where We Are’, by K. Fredenhagen et al.) and
results were brilliantly confirmed by experiment (as they still are with increas-
ing precision). Quantum field theory was also the basis for a treatment of weak
and strong interactions, though there were some flaws: In weak interactions the
qualitative results were impressive, but the renormalization programme, which
was so successful in quantum electrodynamics, was not applicable without
increasing the numbers of parameters indefinitely. In strong interactions, the
problems were just the opposite. The field theory with pseudoscalar mesons
was renormalizable, but the quantitative results of renormalized perturbation
theory were by no means satisfactory. This was not unexpected, however, since
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the interaction constant between the nucleons and the π-mesons turned out
to be several orders of magnitude larger than the electromagnetic coupling.

In contrast to today there were, however, strong signs that particle physics
was more complex than the picture outlined above. This was inferred essen-
tially from results of nuclear physics and confirmed by events produced by
cosmic rays.

In 1947, Rochester and Butler discovered in a cloud chamber experiment
traces with the topology of a V and which were called V -particles, today
they are called strange particles. They were unstable but lived long enough to
form traces in cloud chambers; their mass was definitely higher than that of a
π-meson. Their unwanted presence could not be ignored by theoreticians for
too long a time, especially since they were soon produced in large number
in accelerator experiments. The development of accelerator and beam con-
struction and of more and more refined detectors (e.g. bubble chambers) led
soon to a true profusion of elementary particles which started a crisis for the
whole field and initiated a search for new concepts. Since meson field theory
did not lead to more than just qualitative results, G. Chew made the famous
statement (1961):

I do not wish to assert (as does Landau) that conventional field theory
is necessarily wrong, but only that it is sterile with respect to strong
interactions and that, like an old soldier, it is destined not to die but
just to fade away.

In weak interactions there was, from a strictly phenomenological point of
view, no need to look for new concepts. Experimentalists were looking for the
field quantum of weak interactions, the so-called ‘intermediate boson’, but
even if the search had been successful, the presence of an intermediate boson
alone would not have solved the theoretical problem of non-renormalizability
of the Fermi theory. Furthermore it was not clear if non-renormalizability
was only a problem of weak interactions, since it was not known how strong
interactions can influence weak interactions at small distances.

In strong interactions several lines of research, partially in parallel, par-
tially in contradiction to each other were followed. All of them were motivated
and inspired by quantum field theory, but none of them was willing to accept
its full programme, namely to calculate observable quantities directly from
a Lagrangian. They all tried to handle the problem of the ever increasing
number of elementary particles:

1. In the theory of the analytic S-matrix one tried to eliminate the field con-
cept from strong interactions and concentrate on properties of scattering
matrix elements derived solely from conservation of probability. Though
part of this programme had a strong effect against field theory (see the
quotation of Chew above), many of the postulated analytic properties of
the S-matrix were results obtained in the framework of local quantum
field theory. The approach culminated in the concept of ‘nuclear democ-
racy’, in which all observed strongly interacting particles and resonances
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were treated on the same footing and were related through self-consistency
conditions. This was the so-called bootstrap programme. The application
of Regge’s theory of potential scattering to high energy scattering and
the use of dispersion relations in particle physics were an outcome of this
programme. Another important consequence of the theory was a model de-
veloped by Veneziano: It showed duality, that is it related the high energy
behaviour of the scattering-matrix elements to the resonance structure
(poles) of the matrix elements. It eventually gave rise to string theory.

2. There was a strong emphasis on internal symmetries, motivated by the
success of the isospin symmetry SU(2) in the analysis of π-meson-nucleon
scattering.

3. The discovery of ‘several new particles’ led already Fermi and Yang (1949)
to speculate that not all of them were elementary. They therefore pro-
posed, rather as an illustration of a possible programme than as a real-
istic model, to consider the π-meson as a bound state of a nucleon and
an anti-nucleon. Though Fermi was coauthor of this paper, the idea was
not enthusiastically embraced by the majority of the community. But the
phenomenological evidence for the composite nature of strongly interact-
ing particles grew with time. In Fig. 1 the hydrogen spectrum is compared
with the spectrum of the nucleons, that is the particles and resonances
with baryon number 1 and isospin 1/2. The search for a constituent picture
of the strongly interacting particles led eventually to the phenomenologi-
cally very successful quark model of Gell-Mann and Zweig.

From the concepts mentioned above, only the bootstrap philosophy has
disappeared. Regge theory is a prerequisite for the description of hadronic
high energy scattering processes and it gave birth, through the Veneziano
model, to string theory. Dispersion relations are not in the focus of present-
day theoretical interest, but they are still an important tool in the analysis
of strong interactions. The second and third point are cornerstones of the

Fig. 1. Lowest lying states of the spectra of the nucleon, hydrogen and the heavy
meson state bottomonium
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present standard model, but it was a long and tedious way to incorporate
these concepts into the frame of relativistic quantum field theory.

Before I come to a description of this standard model, I shall just quote a
few important steps which lead to his final establishment.

An important step, though not recognized immediately as such, was the
construction of a classical gauge field theory in which the gauge field trans-
form under a non-Abelian symmetry group (Yang and Mills theory, 1954) (see
‘Quantum Field Theory: Where We Are’ by K. Fredenhagen et al.) It took,
however, some time before this theory was formulated as a quantum field the-
ory in the sense of a formal power series or, non-perturbatively, on a discrete
set of space and time points (lattice).

In 1967 a theory of weak and electromagnetic interactions was proposed
based on a classical Lagrangian, gauge invariant under SU(2) × U(1), with
a mechanism for mass generation of the interaction quanta (massive gauge
bosons). It led to the prediction of neutral weak currents, that is to reactions
like ν̄μ + e→ ν̄μ + e. It also led, together with the experimentally confirmed
absence of strangeness changing neutral currents, to the prediction of a new
quantum number, besides isospin and strangeness, later called charm (GIM
mechanism, after its inventors Glashow, Iliopoulos and Mainai). In 1971 the
proof of renormalizability of the interaction based on the classical SU(2)×U(1)
(electroweak) Lagrangian was finished (’t Hooft and Veltman).

Though the theory was now in a good shape, it was evidently not taken
too seriously in the community. The search for neutral currents was only on
position 8 in a priority list of 10 points of the relevant Gargamelle experi-
ment. However, the experimentalists, who in an heroic effort found in 1972
three events of ν̄μ + e scattering in 1.4 million pictures, write that they were
motivated by the proof of renormalizability of the electroweak Lagrangian.
This discovery of neutral currents opened the way for the general acceptance
of the electroweak SU(2) × U(1) model. The Nobel prize was awarded to
Glashow, Salam and Weinberg for their contribution to the theory of unifica-
tion of weak and electromagnetic interactions in 1979, before the quanta of
the weak interaction, the massive gauge bosons, were found experimentally in
1983 at CERN.

The development of the gauge theory of strong interactions was a bit slower
and there the interplay between experiment and theory was even stronger.

In the deep inelastic scattering experiments at SLAC (1966 ff.) electrons
with high energy were scattered off protons and especially reactions with high
momentum transfer (more than 1 GeV2) were analysed. It turned out that
special features of these reactions were best described by a picture in which
the proton consisted of a bunch of practically free constituents, the so-called
‘partons’. A scheme of this picture is given in Fig. 2.

The detection of the heavy J/ψ-(1974) and Υ -(1976) meson and their
resonances made it even more evident that a bound state picture of hadrons
could explain many features (see Fig. 1, bottomonium).
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Fig. 2. Schematic description of the parton model in deep inelastic scattering. The
virtual photon interacts with only one parton, the rest are not affected. This intuitive
picture makes sense only in a reference frame where the momentum of the proton
tends to infinity

In 1973, Fritzsch, Gell-Mann and Leutwyler proposed quantum chromody-
namics (QCD) as the dynamical theory of strong interactions. It was a gauge
theory based on unbroken SU(3) (colour) symmetry. Its phenomenological
basis was the success of two different approaches, namely current algebra and
the quark model. It could explain extremely well the deep inelastic scattering
experiments and, with some extra ingredients, the spectra of the J/ψ- and
Υ - states.

Though an essential ingredient of the electroweak Lagrangian, the so-called
‘Higgs boson’, has not yet been found, past experience lets us believe that it
will be detected in the next decade or so at the Large Hadron Collider in
CERN. The only very clear-cut evidences that the standard model has to be
modified in its present form are the neutrino oscillations which in the most
favourable case would lead to a rather straightforward extension with 9 new
parameters. Apart from this major and some minor black clouds there is a
very nice blue sky over the model. In the next section it will be described
more systematically.

3 Systematic Description of the Standard Model

In this section’ I concentrate pragmatically on the phenomenological aspects
of a particular realization of local quantum field theory, namely the local
gauge theory of the symmetry SU(2) × U(1). For the more theoretical as-
pects I refer to the contribution ‘Quantum Field Theory: Where We Are’ by
K. Fredenhagen et al.

3.1 Local Gauge Invariance and Fermionic Matter Fields

(see ‘Quantum Field Theory: Where We Are’ by K. Fredenhagen et al.)
Be G an unitary semi-simple Lie group with hermitian generators τi, i =
1 . . . L, that is any element of G can be expressed as exp[i

∑L
i=l ciτi]. Be {ψ(x)}
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a N -tuple of fields which transforms according to a certain x-dependent
representation U(x) of G

ψ(x) → ψ′(x) = U(x)ψ(x) , (1)

in components:

ψ′(x) = Uαβ(x)ψβ(x) =
N
∑

β′=1

(

exp[
L
∑

i=1

ici(x)τi]

)

ψ′
β(x) . (2)

Terms of the form ψ†ψ and powers of them are invariant under this local
gauge transformation. Kinetic terms or derivative couplings in a Lagrangian,
however, will not be invariant due to the x dependence of the transformation.
In order to achieve gauge invariance one has to replace the gradient ∂μ by the
covariant derivative Dμ. It has the form:

Dμ = ∂μ1 + igAμ (3)

with

Aμ ≡
L

∑

i=1

Aiμ(x)τi (4)

The operator valued vector field Aμ transforms according to

Aμ(x) → U(x)Aμ(x)U(x)† − iU∂μU . (5)

The introduction of the covariant derivative fixes the interaction with all mat-
ter fields completely. The gauge g is sometimes included in the definition of
the gauge fields.

A gauge invariant kinetic term for the gauge fields is given by:

Tr FμνFμν (6)

with the field tensor
Fμν ≡ −i

g2
DμDν −DνDμ . (7)

The field tensor transforms homogeneously under the local gauge transfor-
mation:

Fμν → U(x)FμνU(x) † . (8)

A mass term for the gauge fields would violate gauge invariance.
For Abelian gauge groups the kinetic term is quadratic in the gauge po-

tentials Aμ, for non-Abelian groups it contains also cubic and quartic terms;
this is the origin of the interactions among the gauge bosons themselves.
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3.2 Left- and Right-Handed Spinor Fields

The lowest dimensional non-trivial representations of the Lorentz group are
the two-dimensional unitary inequivalent spinor representations. One of them
acts on the so-called ‘right handed’ Weyl spinors, the other on the ‘left handed’
spinors. The names come from the helicity of the spinors. The helicity operator
is the scalar product of the spin and the momentum operator and left-handed
spinors are eigenstates of the helicity operator with negative eigenvalue,
right-handed ones have a positive eigenvalue. Space reflection (parity trans-
formation) transforms a left-handed into a right-handed Weyl spinor and vice
versa. A mass term in the Lagrangian couples the right-handed to the left-
handed spinor fields, it is therefore not possible to construct massive particles
which transform as single-handed Weyl spinors. For massive fermions one has
to consider the direct sum of a right- and a left-handed Weyl spinor, leading
to the four spinor introduced by Dirac. The projectors of a four-spinor on
the left- and right- handed parts are constructed with the four-dimensional
γ5-matrix:

PL =
1
2
(1 − γ5) PR =

1
2
(1 + γ5) . (9)

If a four-spinor field is invariant under charge conjugation, it is called a
Majorana field. This can only happen if the particles have quantum numbers
which do not change under charge conjugation, that is they must necessarily
be neutral. Four-spinor fields which are not invariant under charge conjugation
are called Dirac fields.

3.3 Quantum Chromodyanamics, the Strong Interaction Sector

The fundamental fields of the hadrons, the strongly interacting particles, are
six triplets of Dirac fields, the quark fields:

ψfc , f = 1 . . . 6, c = 1 . . . 3 . (10)

The six quantum numbers f are called flavour, the three quantum numbers
c are called colour. The conventional names for the flavours are down, up,
strange, charm, bottom, and top. To these fields there corresponds no asymp-
totic particles.

The local gauge transformation inducing strong interactions is a three-
dimensional unitary group acting on the colour triplets; it is called colour
group, SU(3)c. It has eight generators and correspondingly eight vector gauge
fields, the gluon fields. The symmetry is unbroken, hence no mass term for
the gluons occurs. With the notation introduced above the Lagrangian has
the remarkably simple form:

L = Tr FμνFμν + i
∑

f

(

ψ̄fγμDμψ
f −mf ψ̄

fψf
)

. (11)
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The resulting quantum theory is called quantum chromodynamics (QCD), it
is renormalizable. The problem of unphysical states, already apparent in quan-
tum electrodynamics, becomes virulent in QCD and necessitates the explicit
appearance of ghost fields (Fadeev–Popov ghosts) in covariant perturbation
theory.

Already the pure gauge theory, that is the part of the Lagrangian not
involving the quark fields, is an interacting theory. It contains no scale, since a
mass term for the gauge fields is forbidden by gauge invariance. Nevertheless a
scale is introduced by the necessity to regularize the theory. Since observable
results should not depend on the choice of that renormalization scale μ, a
scale dependence of the gauge coupling αs ≡ g2/(4π) is induced. By choosing
a mass-independent renormalization scheme like MS this behaviour is not
essentially influenced by the quark masses. The dependence of αs on the scale
is given by the β-function:

μ
∂αs
∂μ

= β′(αs) (12)

The expansion of the β-function is known up to the three-loop level, the
lowest (scheme independent) contribution is

β(αs) =
−1
2π

(11− 2
3nf )α

2
s + O(α3

s) . (13)

Here nf is the number of active flavours, it is maximally 6 and there-
fore the β-function is negative and the theory is asymptotically free: if the
renormalization scale is shifted to higher higher masses, the gauge coupling
decreases with an inverse power of a logarithm. The perturbative theory seems
to be safe for high mass scales, that is at short distances. There are, however,
strong indications that this is not the case for low scales. This makes it-
self remarked already in renormalization group improved perturbation theory
through the so-called ‘infrared renormalons’. These difficulties are presumably
closely related to a property called confinement: physical states are supposed
to occur only as colour singlets, therefore there are no asymptotic fields cor-
responding to the quarks and the gluons. This confinement behaviour should
be a dynamical consequence of the Lagrangian, but up to now a one-million-
dollar award for a proof of confinement is still waiting for a winner.

Presently the problem can be tackled only in models or, numerically, in
the lattice regularized version of QCD (see ‘Quantum Field Theory: Where
We Are’ by K. Fredenhagen et al.). We shall come back to this question
in the discussion on the merits and deficiencies of the standard model. One
consequence of confinement is the lack of a natural scheme to define the quark
masses. For the light quarks (d, u, s) the mass is normally quoted as the mass
in the already mentioned MS-scheme taken at a scale of 1 GeV (Older entries)
or 2 GeV. For the heavy quarks (c, b, t) two schemes are usual: either the so-
called ‘pole mass’ which is convenient for non-relativistic calculations or the
MS scheme, with the mass value itself as scale. Though the pole mass is quite
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intuitive, it is plagued by the so-called ‘renormalon ambiguities’ and therefore
the less intuitive MS-mass is more appropriate for theoretical calculations.

Most probably related to confinement is the spontaneous breaking of a
symmetry which is nearly present in the QCD-Lagrangian (11). The masses
of the very light quarks u and d are indeed very small (see Table 1) and
therefore it is a good approximation to put them to zero. In that case the
Lagrangian is invariant under independent global two-dimensional unitary
symmetry transformations for the left- and right-handed doublets of the u-
and d-quark fields; this is the so-called ‘chiral SU(2)×SU(2) symmetry’. Such
a symmetry is not observed in the hadron spectrum, not even approximately;

Table 1. The elementary fields of the standard model. The charges are those of
the particles, antiparticles have opposite charge. The masses of the quarks are La-
grangian masses in the MS-scheme. The renormalization point for the light quarks
(u, d, s) is 2 GeV, those of the heavy quarks the mass itself

Field Spin Charge Mass Width

Leptons

electron 1/2 −1 0.5109989 MeV stable
muon 1/2 −1 105.63806 MeV 3 · 10−16 MeV
τ -lepton 1/2 −1 1776.99 ± 0.29 MeV 2.3 · 10−9MeV

e-neutrino 1/2 0 < 3 eV
μ-neutrino 1/2 0 < 190 eV
τ -neutrino 1/2 0 < 18.2 MeV

Gauge bosons of electroweak interactions

photon 1 0 0 stable
W±-boson 1 ±1 80.425 ± 0.039 GeV 2.118 ± 0.042 GeV
Z-boson 1 0 91.1876 ± 0.0021 GeV 2.4952 ± 0.0023 GeV

Higgs boson

H0 0 0 > 114 GeV

Quarks

d-quark 1/2 −1/3 5 to 8.5 MeV
u-quark 1/2 2/3 1.5 to 4.5 MeV stable
s-quark 1/2 −1/3 80 to 155 MeV
c-quark 1/2 2/3 1.0 to 1.4 GeV
b-quark 1/2 −1/3 4 to 4.5 GeV
t-quark 1/2 2/3 174.4 ± 5 GeV

Gauge boson of strong interactions

gluon 1 0 0
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therefore one concludes that it is broken sponataneously, that is by some
vacuum expectation value. A consequence of this breaking of a global sym-
metry is the occurrence of massless bosons, the so-called ‘Goldstone bosons’.
Since the symmetry is not only broken spontaneously but also directly in
the Lagrangian through the small but finite masses of the light quarks, the
(pseudo-)Goldstone bosons are not massless but proportional to the quark
masses. The perturbation theory of (pseudo-)Goldstone bosons based on a
Lagrangian invariant under spontaneously broken chiral SU(2) × SU(2) is
highly developed and has led to results in good agreement with experiment.
This ‘chiral perturbation theory’ is, however, not renormalizable and therefore
further and further refinement leads to more and more new parameters.

3.4 The Electroweak Sector

We first discuss the purely leptonic sector of the standard model. Since the
impact of the recent results on neutrino oscillations on the standard model
is still ambiguous, I start, against better knowledge, with the original form,
that is with massless neutrinos. The matter content of the leptonic sector of
the standard model consists of the three charged Dirac fields, namely those
of the electron, the muon and the τ -lepton, and of the three chargeless fields
of the corresponding neutrinos, which might be Dirac or Majorana fields. The
gauge group of electroweak interactions is SU(2)×U(1). To the factor SU(2)
a weak isospin T and to the factor U(1) a hypercharge Y is assigned. The
electric charge Q is related to the third component of the weak isospin and to
the hypercharge by

Q = T3 +
1
2
Y (14)

For the gauge transformations the lepton fields are divided into the right-
and left-handed ones. The right-handed ones transform as singlets under the
SU(2) part of the electroweak group and have the hypercharge Y = −2. The
left-handed charged leptons and the neutrinos form doublets under the trans-
formation, they have the hypercharge Y = −1. We have thus three doublets
of left-handed leptonic fermion fields with Y = −1:

(

ψνe

ψe

)

L

,

(

ψνμ

ψμ

)

L

,

(

ψντ

ψτ

)

L

(15)

and three singlets of right-handed leptonic fermion fields with Y = −2:

(ψe)R , (ψμ)R , (ψτ )R (16)

The SU(2) × U(1) gauge group leads to four gauge bosons which are vector
fields:
1. an iso-triplet, Aiμ, i = 1, 2, 3 for SU(2) and
2. a singlet Bμ for U(1).
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The covariant derivatives acting on the weak iso-doublets fields are

DL
μ = ∂μ1− 1

2
ig′Y Bμ − 1

2
igAμ (17)

Those acting on the iso-singlets are

DR
μ = ∂μ − 1

2
igY ′ Bμ . (18)

It was known for a long time that the weak interactions have a very short
range. Therefore the gauge bosons of weak interactions must be massive. A di-
rect mass term in the Lagrangian would violate gauge invariance and lead to
a non-renormalizable theory, therefore the mass generation has to have more
subtle reasons, see ‘Quantum Field Theory: Where We Are’ by K. Fredenhagen
et al.. It can, indeed be achieved by an additional scalar field, the Higgs field,
φ = (φ+, φ0); which couples as a doublet to the SU(2) part of the electroweak
gauge group, it has hypercharge Y = 1.

The pure Higgs part of the Lagrangian can have the most general potential
compatible with renormalizability and stability:

V (φ) = μ2φ†φ + λ(φ†φ)2 (19)

with λ > 0.
For the case, that the quadratic term is negative, that is μ2 < 0, the

minimal energy density occurs for a non-trivial field configuration at the ex-
pectation value of 〈φ†φ〉 given by

〈φ†φ〉 = −μ2

2λ
≡ 1

2
v2 (20)

This happens already on the classical level. If in the quantization procedure
modulus and phase of the vacuum expectation value are fixed, the SU(2) part
of the symmetry is broken.

The Higgs doublet φ can be parameterized by the new fields ξj , j = 1, 2, 3
and H :

φ(x) = exp

⎡

⎣

i

2v

3
∑

j=1

ξjτj

⎤

⎦

(

0
v+H(x)√

2

)

, (21)

where τ j are the generators of SU(2).
The fields ξj(x) can be ‘gauged away’ so that in the so-called ‘unitary

gauge’ one has

φ(x) =

(

0
v+H(x)√

2

)

, (22)

H(x) is the field of the observable Higgs boson. The covariant derivative in
the kinetic part of the Lagrangian [see (6)] containing this form of the Higgs
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doublet leads not only to gauge couplings of the Higgs to the gauge bosons,
but also to terms quadratic in the gauge fields. They are multiplied by terms
proportional to the expectation value of the Higgs field, v, and lead to masses
of the gauge fields.

If the underlying symmetry is not gauged but global, a similar procedure
leads to a so-called spontaneous symmetry breaking (see end of Sect. 3.3).
In analogy, the Higgs mechanism described above is often also called ‘spon-
taneous symmetry breaking’, though no Goldstone bosons, characteristic for
the degenerate symmetry-breaking vacuum states, are present.

There exist three massive vector gauge fields, two are charged, the
W -bosons (W±), one is uncharged, the Z-boson (Z0). They are related to
the original gauge fields by

W±
μ =

1√
2
(A(1)

μ ± iA(2)
μ )

Zμ =
1

√

g2 + (g′)2
(−gA(3)

μ + g′Bμ) . (23)

The masses of these gauge bosons are

MW =
1
2
vg , MZ =

1
2
v
√

g2 + (g′)2 . (24)

The photon field is given by

Aμ =
1

√

g2 + (g′)2
(g′A(3)

μ + gBμ) , (25)

it is massless and couples only to charged particles.
It is convenient to introduce the weak mixing angle θW by

tan θW =
g′

g
. (26)

Then one obtains the following relations for the electric elementary charge e
and the weak Fermi coupling constant GF :

e = g sin θW , GF =
g2

8M2
W

=
1

2v2
. (27)

The electroweak mixing angle had been determined from neutrino
scattering experiments, therefore one could already from these tree-level con-
siderations predict the masses of the gauge bosons with enough precision
to make a dedicated experiment at CERN; this led to their experimental
detection.

Also the Fermion masses can be generated by the vacuum expectation
value of the Higgs doublet by couplings of the Dirac fields to the Higgs doublet
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(Yukawa coupling). The coupling is then proportional to the mass of the
fermion divided by v.

In order to incorporate hadrons into the electroweak sector, one assigns
to the right- and left-handed quarks different hypercharges Y . To all the left-
handed quarks one assigns the hypercharge Y = 1

3 , to the right-handed up,
strange and top quark Y = 4

3 , and to the down, strange and bottom quark
Y = −2/3.

The eigenstates of the quark mass matrix in the strong interacting sector
are not eigenstates of the weak interaction and it is usual to express the lower
components of the doublets (d′, s′, b′) as linear combinations of the mass
eigenstates (d, s, b). The matrix relating them is the Cabbibo–Kobayashi–
Maskawa (CKM) mass matrix:

⎛

⎝

d′

s′

b′

⎞

⎠ =

⎛

⎝

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠ ·
⎛

⎝

d
s
b

⎞

⎠ (28)

In Table 1 all these fields are listed, and the CKM mass matrix is discussed
in Sect. 4.2.

4 Achievements and Deficiencies of the Standard Model

4.1 Strong Interactions

If the renormalized gauge coupling constant of strong interactions, αs(μ), is
small, perturbation theory can be used to calculate observable quantities. This
happens if in a process at least one energy scale μ is large. A typical example
of such a hard process is deep inelastic scattering. This is the reaction of highly
energetic electrons and protons, where the large quantity is the momentum
transfer of the electron to the hadron. It is schematically displayed in Fig. 2.
It can be viewed as the scattering of a virtual photon, γ∗, on a proton, that
is the reaction equation is

γ∗ + p→ anything (29)

The virtual photon carries the momentum transfer (p′e−pe) from the electron
to the proton. A process is called deep inelastic if the square of the four
momentum transfer Q2 = −(p′e − pe)2 is at least 1 GeV/c and the invariant
mass of the outcoming hadronic system, the ‘anything’ in (29), is at least
2 GeV/c2. The ‘wavelength’ of the virtual photon is �/Q, that is for high
momentum transfer the wavelength is short and, as in an optical microscope,
the resolution power is high.

The cross section for deep inelastic scattering divided by the momen-
tum transfer Q2 is the so-called ‘structure function’. It depends in general
on the momentum transfer Q and the invariant mass of the outgoing hadronic
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system, W 2 = (p′e−pe+p)2, conveniently expressed through the dimensionless
quantity x = Q2/(W 2 + mp) ≈ Q2/W 2. The structure function is

F (x,Q2) ≡ σγ∗p→X/Q2 (30)

In the naive parton model of deep inelastic scattering the hadron is viewed
as consisting of non-interacting particles (partons); in that case the structure
function depends only on the variable x. The function F (x) can be viewed as
the distribution of the longitudinal momentum fraction of the partons. This
intuitive picture, however, applies only in the frame, in which the hadron has
infinite longitudinal momentum.

In QCD the quarks and gluons can be viewed as partons. At short
distances, the gauge coupling becomes weak (asymptotic freedom, see (12))
but does not vanish completely; this leads to a Q2 dependence of the struc-
ture function F (x,Q2). If this function is known for a fixed value Q2 = Q2

0,
perturbative QCD allows to calculate it for all values of Q2, provided αs(Q2)
is small enough to justify a perturbative expansion. This has been done in
the enormous range:10−5 < x < 1 and 2 < Q2/GeV2 < 10000; the agreement
between next-to-leading order calculations and experiment is very satisfac-
tory. This can be seen from Fig. 3 where the values of the structure function
measured by different experimental groups are shown. Also displayed are the
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Fig. 3. Experimental points and theoretical curves for the structure function at
two different values of the photon virtuality Q2



The Standard Model of Particle Physics 39

curves obtained from perturbative QCD: one can be viewed as input, the other
one as theoretical prediction.

For purists it should be noted that due to asymptotic freedom most prob-
ably the formal power series in αs could be made convergent by resummation.

Another very successful application of perturbative QCD is jet physics.
The annihilation of an electron and a positron into many highly energetic
hadrons can be described perturbatively, that is on the quark-gluon level.
In Fig. 4 the lowest order contribution to the annihilation of an electron
and a positron into a quark, an antiquark and a gluon is depicted. The fi-
nal particles in the perturbative amplitude, the quark, antiquark, and gluon
cannot be observed as asymptotical particles, but under certain well-defined
conditions some so-called ‘infrared save’ features of the reaction should sur-
vive in the real asymptotic, that is the hadronic final state. The final states
of the perturbative calculation determine the axes of the hadronic jets.

gluon

electron quark

positron antiquark

electron quark

positron antiquark

gluon

(a)

(b)

Fig. 4. Two- and three-jet events in electron–positron annihilation. (a) simplest
graphs for three-jet events. Dashed lines represent electrons, wavy lines photons,
solid lines quarks and coiled lines gluons. Quarks and gluons are treated here as if
they were real particles. (b) Schematical picture of the observed three-jet events of
DESY; the lines are traces of hadrons, the three-jet axes are clearly visible
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The three-jet events played an important role for consolidation of QCD;
very loosely speaking they can be considered as the existence proof of the
gluon.

Another important domain of perturbative QCD is the spectroscopy and
decay of hadrons composed of heavy quarks. Here the high quark masses set
the hard scale which makes the relevant gauge coupling small. Especially in
the effective theory of non-relativistic QCD (NRQCD) calculations can be
performed in a very controlled way.

The running of the gauge coupling and the consistency of QCD in a large
variety of applications can be inferred from Fig. 5. There the values of the
strong gauge coupling αs, obtained from different processes at different scales,
are shown, left figure. In the right figure the values are rescaled to μ = MZ

using (12).
Impressive as the successes of perturbative QCD are, one has to note

that the explained phenomena are rater hand-picked in order to be tractable.
The most obvious phenomena of particle physics, as hadron spectra and
hadron–hadron interactions at arbitrary scales, cannot be treated in it.
Perturbative QCD allows for instance only to calculate the Q2 dependence of
the structure function of deep inelastic scattering, but the structure function
itself at a given value of Q2 has to be taken from experiment or from QCD-
motivated models.

Unfortunately there is no analytic way to treat QCD non-perturbatively.
In order to obtain quantitative non-perturbative results in an analytical cal-
culation one has to rely on models, that is on more or less deformed or
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Fig. 5. The strong gauge coupling αs(μ) obtained from different reactions at differ-
ent scales μ. In the right figure the values are rescaled with (12) to μ = MZ = 91.2
GeV. From Review of Particle Physics, W.-H. Yao et al., Particle Data Group,
Journal of Physics G, Vol. 33, p 1 ff., Fig. 9.1 and 9.3
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simplified versions of QCD, or one has to perform numerical calculations.
A method to calculate certain matrix elements is based on a regularization of
QCD on a space-time lattice (see ‘Quantum Field Theory: Where We Are’ by
K. Fredenhagen et al.). It is possible to give such a regularization preserving
gauge invariance, by assigning the gauge fields rather to links between lattice
points than to lattice points itself.

The lattice-regularized version has two advantages: it is well defined for
any finite lattice spacing and the functional integrals of continuum quan-
tum field theory become high-dimensional ‘ordinary’ integrals, in general of
Grassman or Haar-type. If one also transforms the field theory on the space-
time continuum with Minkowski metric to a continuum with Euclidean metric,
these high-dimensional integrals can be performed numerically using Monte-
Carlo methods. The natural expansion parameter in lattice QCD is the
inverse of the gauge coupling constant, therefore even analytic results can be
obtained for finite lattice spacing. On the way to the continuum limit one has,
however, to choose the lattice spacing smaller and smaller and therefore the
mass scale becomes higher and higher and the inverse coupling larger and
larger. Therefore there is no way to translate results of the strong coupling
expansion reliably to continuum QCD. It is, however, comforting that numer-
ical calculations show at small enough couplings a scaling behaviour which
agrees with that obtained from perturbative QCD. This is by no means a
proof, but a very good indication that in that case the numerical results are
close to the ones of a continuum theory. It is also noteworthy that numerical
results in general agree quite nicely with results obtained with analytic results
of models which are less closely related to the QCD Lagrangian but respect
Lorentz invariance.

The fast development of computer power and also the development of
sophisticated analytic developments of lattice field theory has led to many
interesting results. It should, however, be noted that the results of lattice cal-
culations, which can be compared with experimental results, imply some more
or less justified extrapolation and that there is no proof that the continuum
limit exists at all.

The theoretical treatment of high energy reactions of hadrons is generally
in a rather provisionary shape, depending largely on simplifying models. Some
general features can qualitatively be understood, but there are practically no
truly hard statements derived directly from the QCD Lagrangian.

The biggest success of non-perturbative QCD would of course be a non-
perturbative continuum theory with asymptotic freedom and confinement.

4.2 Weak and Electromagnetic Interactions

The electroweak sector of the standard model is phenomenologically in a
better shape, since there the gauge coupling constants are so small that
all relevant questions can be answered in perturbation theory. However,
since the strongly interacting fundamental fields are the quark fields and
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not the hadrons, and since experiments only yield information on hadronic
amplitudes, the problems of strong interactions are also imported into the
electroweak sector. The leptonic sector is free of these problems.

Electroweak theory made spectacular predictions, both qualitative and
quantitative ones. In order to explain the observed absence of neutral
flavour-changing currents due to the so-called ‘GIM mechanism’, the quarks
have to occur in families. Therefore a (heavier) brother of the strange quark
was predicted, it was followed, after discovery of bottom flavour, by the predic-
tion of the top quark, forming with the bottom quark the third family. These
additional quarks had another very satisfactory theoretical consequence. The
purely leptonic sector of the standard model is plagued by the presence
of axial anomalies which jeopardize renormalizability, since they violate the
SU(2) symmetry. The quantum corrections through internal quark loops with
the above-mentioned three families cancel exactly the anomalies of the three
leptons (e, μ, τ).

Another appealing feature of three quark families is the possibility to ex-
plain the observed CP -violation in the framework of the standard model. This
would not be possible with less families.

Already on the tree level the model yielded rather precise values for the
masses of the gauge bosons. The experimental input were the weak and elec-
tromagnetic gauge couplings, known for almost a century, and new data from
neutral currents, determining the electroweak mixing angle (26) with sufficient
precision. Perhaps even more spectacular was the prediction of the existence
of the heavy top quark and determination of its mass (ca 170 GeV) from
radiative corrections. This prediction can be compared with the theoretical
prediction and the determination of the position of the planet Neptune by
perturbations of the orbit of the Uranus. Effects of the top quark had been
first observed at the Tevatron in 1995.

There exists a long and truly impressive list of very precise predic-
tions, which have been measured with equally good precision at LEP. But
most physicists see in the good agreement not so much a triumph of the-
ory but rather resent tight constraints on new physics. In the standard
model there is no place for new families with lightest members (presum-
ably neutrinos) lighter than one half of the Z-mass. This follows from the
excellent agreement between the theoretical and experimental values of the
widths of the gauge standard model experiment bosons, displayed in Table 2
and Fig. 6.

Table 2. Theoretical prediction and experimental value of the Z-width

Standard Model Experiment

total Z0-width/GeV 2.4961 ± 0.0012 2.4952 ± 0.0023

total W±-width/GeV 2.0921 ± 0.0025 2.114 ± 0.0025
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Fig. 6. The resonance curve of the Z-boson. In order to make the errors visible, they
have been enlarged by a factor 10, they are in reality smaller than the thickness of
the lines. From Review of Particle Physics, W.-H. Yao et al., Particle Data Group,
Journal of Physics G, Vol. 33, p 1 ff., Fig. 40.8

Another excellent example for the little space left for new physics is the
so-called ‘ρ parameter’ which is exactly one for the standard mass gener-
ating mechanism through one Higgs doublet but would deviate from one if
other or more complicated scenarios would prevail. The experimental value
(one σ) is

ρ0 = 1.0012+0.0023
−0.0014 (31)

There is, however, still one essential particle of the standard model not
(yet) detected, the Higgs–boson. It is responsible for a key ingredient, namely
mass generation of the gauge bosons of the electroweak theory. Unlike the top
quark, which is a fermion, the influence of the Higgs mass, mH, on radiative
corrections is rather weak. Correspondingly the errors for the Higgs mass
obtained from these corrections are large. On the 90% confidence level the
newest limits (unpublished 2004) are

45 < mH/GeV < 183 (260 for 95% CL) . (32)

The lower limit from direct experimental search (95% CL) is mH > 114.4
GeV.

A special feature of the quark content of the electroweak model is the
mixing of the mass eigenstates in the weak families. It is expressed by the
CKM-matrix, see (25). This matrix is unitary and after extraction of a trivial
phase factor can be expressed through three real and one imaginarynumbers.
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In the Wolfenstein parametrization it reads, neglecting terms O(λ4),
⎛

⎝

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠ =

⎛

⎝

1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞

⎠ + O(λ4)

(33)
The numerical values for the four parameters are (again neglecting higher

terms in λ)
λ = 0.2272± 0.0010 , A = 0.818+0.007

−0.017 ,

ρ = 0.221+0.064
−0.028 , η = 0.34+0.017

−0.045

(34)

The imaginary parameter iη is responsible for CP -violation and all
presently available data of particle physics are compatible with the violation
induced by it. One can see that in the matrix representation (33) it enters only
in the elements involving the top or bottom quark; this explains the smallness
of CP -viaolation. Indeed, three families are necessary to allow an imaginary
parameter leading to CP -violation in the frame of the standard model; soon
stringent predictions in B-meson decays will be tested.

We now have a short look at the deficiencies of the standard model. Before
coming to more ideological objections, we first discuss the most compelling
evidence for a necessary modification, though it is not yet clear how and
to which extent the model has to be altered. There are compelling indica-
tions that neutrinos have a finite mass and that, as for the quarks, the mass
eigenstates are not the eigenstates of the SU(2) doublets and therefore neu-
trinos of one flavour, e.g. electron neutrinos can oscillate into that of another
flavour, for instance into μ-neutrinos.

The strong indications for these oscillations are as follows:

1. There is a long-standing problem of solar neutrinos. The sun emits less
neutrinos than it is to be expected from the very well understood solar
model. This lack of neutrinos has been observed over the full energy spec-
trum and therefore a true loss of neutrinos on the way from the sun to
the earth is very probable. It had been an old suggestion that neutrino
oscillations are responsible for that loss, since all experiments were only
sensitive to electron neutrinos and blind to the other ones.

2. In a huge counting experiment (Super-Kamiokande) of neutrinos produced
in the atmosphere, it turned out that there was a strong asymmetry be-
tween those neutrinos coming from above and from below the horizon.
This asymmetry can best be explained by the hypothesis that a longer
path leads to a loss of neutrinos due to oscillations.

3. From the KEK accelerator to the distant Kamioka counter (K2K) less
neutrinos arrived than expected. Statistics is poor, but the result is in
excellent agreement with the predictions from neutrino oscillations based
on the results of the other experiments.

4. The most direct proof is the observation of a sizable flux of μ-neutrinos
coming from the sun by the SNO collaboration. Since in the thermonuclear
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reactions on the sun only electron neutrinos are generated, this can be
considered as direct proof of neutrino oscillations, especially as the total
number of observed neutrinos, e together with μ-neutrinos, agrees very
well with the prediction of the solar models.

Since there are three different neutrinos, the mixing matrix is at least a
three-by-three matrix, which is analogous to the CKM-matrix, except that
it can contain two additional CP -violating phases. It is also possible that
there exist additional neutrinos, which do not couple to the W - and Z-boson
(so-called ‘sterile neutrinos’).

The direct upper bounds of the neutrino masses are given in Table 1;
neutrino oscillations indicate mass differences of the order of 0.01 eV. It
is plausible that this is the order of magnitude of the neutrino masses. As
mentioned above, this must lead to a modification of the standard model.
If the massive neutrinos can be incorporated in a simple extension of the
present standard model, these small masses indicate that mass generation oc-
curs through effects at short distances, e.g. through a very heavy additional
Higgs boson; the value of the ρ parameter, see (31), which is very close to 1,
points in the same direction.

A quite serious theoretical point, which speaks against the standard model
as a possible final theory, is the group structure of the electroweak gauge
group SU(2)×U(1). The U(1) part leads to a gauge coupling which increases
with increasing mass scale, since the β-function is positive for U(1). One
cannot conclude from perturbation theory alone that this rise increases indef-
initely, but calculations on the lattice indicate that this is indeed the case.
The only solution to that problem is that the coupling is zero, that is there
is no U(1) interaction at all, in contradiction to experiment (see ‘Quantum
Field Theory: Where We Are’ by K. Fredenhagen et al.). This objection is
however – at least partially – met in a modification discussed in the next
section.

Unjustified from a formal point of view but nevertheless serious if one
adopts a realistic view of the regularization procedure of quantum field the-
ory is the question of the energy density of the vacuum. Generally speak-
ing it makes no sense, to use the classical definition of the energy density
in a quantized theory, since the latter involves products of fields at the
same space-time point and therefore has in general to be regularized and
to be renormalized. The energy density is in this procedure rather an in-
put for the renormalization than a prediction of the theory. If one adopts,
however, the view that the regularization is provided by the short dis-
tance behaviour of the theory, the natural choice for the regularization is
a cutoff at the scale where new physics sets in. If one assumes that this
happens at the Planck mass, one obtains the tremendous energy density
ρE = m4

Planck ≈ 3 · 1078 GeV fm−3 and even a cutoff at the modest scale
of 1 TeV leads to the value ρE ≈ 1014 GeV fm−3. In gravitational theory the
energy density plays the role of a cosmological constant (see ‘Dark Energy’



46 H. G. Dosch

by Straumann). The value for the energy density obtained from astronomical
observations is ρE ≈ 5 · 10−45 GeV fm−3. This huge discrepancy must be of a
major concern for all who have a realistic point of view for the regulatization
procedure.

There is seemingly a way out, namely a supersymmetric field theory. In
this theory the energy density of the vacuum vanishes, since the fermionic and
bosonic contributions cancel each other. Supersymmetry, if it exists in nature
at all, must however be broken at a scale of at least 1 TeV; this reduces the
dicreapancy, but it remains still formidable.

More ideological are the following arguments, which have to to with
simplicity and ‘beauty’. They are not compelling in empirical science but
have been (sometimes) fruitful in the past. The most often heard objection
against the standard model is the large number of parameters occurring in it.
There are indeed 18 or 19 free parameters even in the version with massless
neutrinos:

• three gauge couplings, one for the colour gauge group SU(3) of strong
interactions, one for the SU(2) part and one for the U(1) part of the
electroweak gauge group

• nine mass parameters for the three charged leptons and 6 quarks
• four parameters in the CKM quark mixing matrix
• two parameters in the Higgs part of the Lagrangian: the self-coupling λ

and the vacuum expectation value v of the Higgs doublet To this one may
add a 19th parameter:

• the so-called ‘θ parameter’.4

Incorporation of neutrino mixing will at least add nine new free parameters.

5 Extrapolation to the Near Future

The purpose of this contribution is to give an account of the present experi-
mentally well-established situation. Nevertheless there are already now some
experimental hints which indicate a certain direction of development in the
frame of local quantum field theory, see for this point especially the con-
tribution Beyond the Standard Model’ by M.G. Schmidt. An obvious way
to reduce parameters is to embed the gauge groups of the standard model,
that is SU(3) × SU(2) × U(1) into a simple group, for instance SU(5). In
that case we have only one gauge coupling. Such a large symmetry is called
a GUT (from grand unified theory) symmetry. This symmetry is supposed
to be broken at a certain scale MG, and all particles which do not occur in
the standard model have masses larger than that scale. Since this scale is
supposed to be very high, there is little hope to observe these new particles

4 The θ term is an additional term in the pure gauge part of the Lagrangian which
does not change the equations of motion but can lead to CP -violation.



The Standard Model of Particle Physics 47

directly. The standard model is an effective theory of the GUT, this means
that in the model all degrees of freedom relevant at scales higher than MG are
absorbed in the renormalized parameters of the standard model. This is pos-
sible through the decoupling of the heavy particles – even inside loops – if the
external scales are small compared to MG and the theory is renormalizable.
Renormalization group arguments based on the gauge group of the standard
model may be applied and yield the observed, experimentally well-established
scaling behaviour for the strong and the electroweak gauge couplings. If the
scale comes, however, into the region of the GUT scale MG, the heavy states
can no longer be neglected and the different gauge couplings of the standard
model must meet and follow together the renormalization group equation of
the unified gauge group, e.g. SU(5). In this way the grand unification scale
MG is constrained by the low-energy effective theory. Furthermore there is a
stringent consistency condition for the effective theory since all three gauge
couplings have to meet at the same point.

The GUT theory will generally lead to additional interactions in the stan-
dard model which from the point of view of the effective theory might not
be renormalizable, but they are suppressed by powers of μ/MG, where μ is a
scale typical for the effective theory, that is μ � MG. A nice example of an
effective theory is the Fermi theory of weak interactions. It is an effective the-
ory of the standard model at scales small compared to the mass of the gauge
bosons W and Z. In it occurs the unrenormalizable four-fermion coupling,
but the coupling constant GF in front of it is proportional to M−2

W ,

GF =
√

2g2

8M2
W

(35)

Important additional terms introduced by GUT are interactions leading
to the decay of the proton into leptons and other non-baryonic states. These
effects will be small since they are suppressed by powers of MG. Nevertheless
experimental limits on the proton decay in specific channels have already fal-
sified a lot of proposals for grand unified theories. Present limits for important
decay channels are, with 90% confidence level,

tp→e+π0 ≥ 1.6 · 1033 years tn→e+π− ≥ 0.16 · 1033 years (36)

At the moment the most widely accepted extension of the standard model is
a supersymmetric gauge theory. The supersymmetry is broken at a scale of
about 1TeV, that is a scale low compared to the Grand unification scale MG.
This model is called the supersymmetric standard model. The indications that
this might indeed be the next standard model are

1. The supersymmetric standard model predicts a light Higgs, mH < 170
GeV. This is a value well inside the range of the LEP predictions.5

5 These limits were much lower before the radiative corrections were calculated and
before the lower limit of the Higgs mass was pushed to around 115 GeV.
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2. All three gauge couplings meet nicely at a scale MG ≈ 3 · 1016 GeV.
3. This scale can lead to a proton lifetime compatible with present-day ex-

perimental bounds (but close to them).

The supersymmetric standard model is still a speculative model since up
to now no particle predicted by supersymmetry has been observed, but the
speculations are based on present-day experimental findings; they make also
stringent predictions for the near future:

1. The light Higgs-boson should be observed at LHC.
2. The proton decay should be observed in the near future.
3. Supersymmetric partners of known particles should most probably seen

at LHC.

If these predictions will be fulfilled, then the supersymmetric GUT will be
the new standard model. Precision experiments could then indirectly explore
the large desert from the TeV region to 1016 GeV.

6 Conclusion

The standard model is apparently the adequate description of subnuclear
physics up to scales of the order of several hundred GeV. In the framework
of renormalized perturbative local quantum field theory it gives an excellent
quantitative description of electromagnetic and weak interactions. In strong
interactions there are also many quantitative results, but a major deficiency is
the lack of understanding of confinement. The success of models and numer-
ical calculations in the lattice-regularized theory with finite lattice spacing
indicate that the fundamental Lagrangian is the correct one, but a formal
proof of a confining continuum limit is still missing.

All interactions can be derived from the postulate of local gauge invariance,
at the moment the gauged group is SU(3)×SU(2)×U(1). The matter content
of the model is well structured, but masses and particle mixing introduce more
than a dozen free parameters. Many people dislike this and they also want
answers to questions like ‘Why three families? Why integer and fractional
charges?’ Questions of this type are certainly legitimate and have sometimes
led to real progress in physics.6 But we should not forget that the principal
questions of physics as a empirical science should be those of ‘What’ or ‘How’.

At the moment there are several burning questions to be answered:

• Is there a Higgs boson and is it light?
• Does the proton decay and what is its lifetime?
• Are there supersymmetrie partners of the known particles with masses

below 1 TeV?
6 An example is the detection of ultraviolet radiation by J.W. Ritter (1801). He

was guided by the principle of ‘polarity’ which was very popular among natural
philosophers at that time.
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These are not questions for the far future, the relevant experimental facilities
exist or are already under construction. The answers to these questions will
decide over the viability of the new supersymmetric standard model with a
simple gauge group. The dream of a final theory may have disappeared, but
the dream of a big leap forward seems quite realistic.
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The well-founded cornerstones of our discussion are the classical (Einstein)
theory of gravity, local relativistic quantum field theory (QFT), and
elementary particle physics, today described so impressively by its so-called
“Standard Model” (SM). “Well-founded” does not just imply mathematical
elegance but most importantly a solid fundament of observational/experi-
mental findings – the relevance of black holes and of the standard cosmologi-
cal model confirmed by astrophysical observations; the spectacular successes
of quantum electrodynamics (QED), e.g. for anomalous magnetic moments;
non-abelian gauge theories and the three-quark-lepton generation structure in
the SM explaining a huge body of data (“Rosenfeld table”). The big question
remains how to raise a building with these cornerstones: are there further es-
sential pieces still missing? Will it be one unifying building as suggested by
the only theory ansatz with this claim – superstring theory?

This involves questions rather far away from our present experimen-
tal/observational possibilities. The Planck scale MPL ∼ 1018 GeV of gravity,
important in quantum gravity, and related scales in string theory are far, far
above the “high energy” scale of present accelerators, being above, but still
in the range of the electroweak scale ∼ 102 GeV. Even the highest observed
scale of cosmic rays ∼ 1010 GeV still is intermediate on the way to MPL.

A century ago there was a similar problem how to connect microscopic and
macroscopic physics. Its solution was one of the great successes of mankind.
A deep understanding on one side was based on experimental access to mi-
croscopic physics – molecules, crystal lattices, nuclei, ..., on the other side on
theoretical methods to develop “effective theories” for the macroscopic world,
– gases, fluids, solid states. The appropriate language of the discussion raised
above, today, is “Wilsonian” renormalization leading to “effective field theo-
ries” designed for a certain scale of observation. The description of a physical
system in such a language changes if one considers the same system with
varying resolution. Going to a weaker resolution, “to the infrared” (IR), finer
details of the object are “integrated out”. Perturbation theory in such effective
theories is finite since Feynman loop integrals are cut off in momentum/energy

M. G. Schmidt: Beyond the Standard Model, Lect. Notes Phys. 721, 51–57 (2007)
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above the fixed scale of the theory. Adding non-renormalizable terms at very
small distances (large momenta) is harmless since they vanish going to the
IR region interesting for us. This explains the importance of renormalizable
theories in the SM and why we can work quite successfully in this well-known
area of QFT (well-known only if infrared properties like confinement are dealt
with numerically; there still appear questions concerning its precise nature,
and progress, e.g. using supersymmetric variants of quantum chromodynamics
(QCD), is slow). The process of renormalization “group” by integrating out
physics can strictly speaking not be inverted going to small distances – the “ul-
traviolet” (UV). Still in QCD the postulate that there is a simple asymptotic
freedom behavior at small distances is consistent. All this can be made very
concise in the path integral formulation (“sum over fields”) of QFT and can
be discussed even quantitatively in numerical studies of discretized theories
(“lattice (gauge) theory”).

Let us inspect questions of elementary particle physics which cannot be
answered within the SM: certainly most prominent is the unification of the
strong and electroweak gauge forces. Indeed continuing the “running” (effec-
tive) gauge couplings based on the particle content of the SM towards the UV,
one observes some convergence to a common value at a scale of about 1014

GeV. Going to the minimal supersymmetric extension of the SM (MSSM) this
is much improved resulting in a common value of about MGU ≈ 1016 GeV.
Postulating a grand unified gauge symmetry corresponding to a semisimple
gauge group (SU(5), SO(10)) quarks and leptons are in common representa-
tions and related by gauge interactions. For a spontaneous breaking to the
SM one has to introduce eventually further Higgs fields (or some non-local
Wilson-loop operators) all in representations of these groups. This clearly
leads beyond the SM. Massive neutrinos, now well established in experiments,
can be considered still partly in the range of the SM, but their small mass
naturally induces new scales MM ≈ 107−1014 GeV via mν ∼ m2

D/MM (where
mD is a typical charged lepton mass), the so-called “see-saw mechanism”. The
scale MGU � 1016 GeV is still two orders of magnitude below the Planck scale
MPL of gravity but big enough to suppress the decay of protons and neutrons
of our universe within its age of ≈ 1010 years.

Supersymmetry (SUSY) is essential in most of these model buildings. This
is a symmetry between bosons and fermions, e.g. between a photon and
a photino, an electron and its bosonic partner (“selectron”). In its gauged
(“local”) form it also changes gravity to supergravity (SUGRA). Supersym-
metry is the only possible enlargement of the Ponicare group. In more practical
terms it allows to continue the successful way to do calculations in the SM. The
main point here is its ability to tame UV-divergences requiring an artificial
fine tuning in the SM in order to preserve hierarchies between vastly different
scales. This is why it allows to continue the successful calculations of the SM
and why it is so popular now in phenomenologically minded circles though
being a genuinely theoretical concept not confirmed in experiments up to now
(but hopefully soon). Since there are certainly no observed super-partners
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with equal mass in nature, SUSY has to be broken in a “soft” way such that
the above virtues are not destroyed. There are numerous attempts to model
such soft breakings which should have spontaneous origin, but still this prob-
lem is not finally settled. The alternative to SUSY is a plethora of problems,
mostly related to non-perturbative effects for strong coupling systems, and
thus this is much less attractive – though maybe the future! If supersymme-
try in connection with SM physics will not be detected in the next generation
of experiments, this will have serious drawbacks for most of the theoretical
developments in elementary particle physics in the last 30 years.

Modern superstring theory contains supersymmetric structures, if it is con-
sidered as a 2-dimensional conformal QFT, but it does not necessarily imply
space-time supersymmetry, in particular not at the electroweak scale. Still
the latter is a genuine ingredient. Unfortunately, even after marvelous de-
tections of connections between the various types of string theories this ap-
proach is (still?) not a very concrete guide how to go beyond the SM. There
is a vast number of possible string ground states (“vacua”) – a “landscape”
of string vacua – being on equal footing in our present understanding and
there is no well-understood dynamics preferring one from the others. Even
if one fixes to one of these vacua the calculational abilities to extract phe-
nomenological information – how far the SM is obtained and where there
are deviations – is quite limited. These days it is very popular to invoke
the “anthropic principle”, saying roughly that we are living in a particular
world (vacuum), in one of these billions of other possibilities, because only
there the structures could develop which made our universe so beautiful and
sophisticated and which allow us to live and to do research as we do. Of
course, this is not what a scientist likes to believe, who wants to explain and
predict quantitatively physical phenomena and fundamental constants in our
world from simple principles. However, like the improbable existence of our
planet earth the choice of such an improbable “vacuum” state is a logical
possibility. Since almost nothing is known about the dynamics leading to dif-
ferent vacua, just some counting of states has been done – these ideas are still
very vague.

Still string theory already today is an invaluable source of inspiration, if
it comes to constructing models beyond the SM: (i) Grand unification with
some (semi)simple non-abelian gauge groups can be very genuinely realized
(though it is not mandatory and) though “details” like the pattern of spon-
taneous breakings and of the generalized Higgs fields can only be attempted
for very specific string vacua. (ii) The genuine role of supersymmetry and
supergravity in string theory we have already mentioned. (iii) Maybe most
interestingly more than four space-time dimensions are required in a very
concise way in consistent string theories. These may show up “only” at the
Planck scale MPL and maybe in realizations of a grand unification of gauge
interactions. These higher dimensional worlds at extremely small distances
allow for beautiful GUT-constructions leading to structures like in the SM in
the corresponding effective theory for light particles. Topological structures
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in the higher dimensions curled up at these small distances can be related
to the observed quark-lepton generations. It is conceivable that all or some
part of the quarks and leptons may exist in lower dimensional subdomains
(“branes”, “singular surfaces”) in such a theory and that one can calculate
their (Yukawa) interactions analyzing some intersections. This is all beset
with mathematical problems and thus has some strong relations to modern
mathematics. Still somewhere in this haystack one might find the needle some
day. Of course, it would be amazing, if one could see these extra dimensions
in accelerator experiments not involving gravity. Up to now these exclude
such structures below energies of about 104 GeV. Substantial deviations from
4-dimensional gravity are still not excluded at distances in the sub-mm range.
One can also try to construct models with extra dimensions, say one or two
for simplicity. This is quite in the spirit of the old Kaluza–Klein approach ex-
cept that now part of the fields are allowed to be based on lower dimensional
submanifolds (“branes”), say our 4D world. These models are only vaguely
related to string theory, though there is a trend these days to base them
in string theory. For example, quantum anomaly cancellations, a basic point
in string theory, still have to be checked “by hand”. However, these models
provide us with some insight concerning the embedding of the SM not seen
in genuine string theory with all its complexity so easily, e.g. the reduction
of Higgs multiplets to their doublet components appearing in the SM, the
use of non-local Wilson lines made out of extra dimensional gauge field com-
ponents for realizing Higgs breaking, the discussion of the famous quadratic
divergences for the Higgs mass in this context and last but not least the unifi-
cation of gauge forces below the Planck scale (not necessarily true for general
string vacua).

Theoretical physicists determined to raise a unified (triangular?!) building
with the cornerstones mentioned at the beginning cannot just concentrate
on one edge. They have to jump back and forth trying to connect formal
theories with experimental/observational facts. The dream to create a theory
just with the criteria of elegance of principles never worked out (perhaps
with the exception of Einstein’s general relativity?). Thus the “bottom-up”
approach – more modest, less brilliant might be necessary: to construct mo-
dels partly realizing the ideas discussed above and to proceed with “trial
and error”.

Trying to look beyond the SM, observations related to very early cosmology
may be very helpful. The physics of “the first three minutes”
(S. Weinberg) after the big bang can be connected to high energy elemen-
tary particle physics observed with present accelerators and in underground
observatories (neutrino physics) and well described by the SM with simple
extensions in the case of neutrinos. The big bang model itself contains some
problematic features, in particular the homogeneity over distances not con-
nected by light signals. This is remedied by a period of exponential growth,
the so-called “inflation”, at the end of which thermalization leads to the suc-
cessful standard big bang model. Indeed, realization of inflation in quantum
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field theoretical models brings along quantum fluctuations which later on
turn into classical inhomogeneities creating the observed large-scale structure
including galaxies when the universe is getting neutral and transparent. Such
fluctuations also show up in the thermal background radiation of the uni-
verse measured in recent years with incredible accuracy by satellite observa-
tories (WMAP, etc.) and can be well explained by an inflationary period. The
paradigm of inflation is not tied to a particular model, one just needs a period
with an effective cosmological “constant” above the TeV region, maybe not
much smaller than the Planck-mass scale. It is intriguing to speculate about
a relation of this scale to grand unification. There is one common feature
of all such models: they go beyond the SM! Thus they usually contain also
particles which are too heavy to be seen in present experiments, but which
are candidates for “(cold) dark matter”, i.e. non-baryonic matter which is not
luminous and forms invisible halos of the galaxies. This kind of matter should
make ∼ 25% of the matter of the universe (which in accordance with inflation
has the critical density) as an analysis of the WMAP data suggests. Baryonic
matter, the material of our stars and of gas nebula, is analyzed to amount to
only ∼ 5%, and the remaining 70% of energy is vacuum energy, a cosmological
constant, or alternatively, the energy of a field almost spacially constant in
the observed universe, but changing in time – “dark energy” (“quintessence”).
Again this cannot be explained by the SM. Another number to be explained
is the baryon number of our universe, the remaining baryon asymmetry af-
ter recombination of baryon–antibaryon pairs in the cooling down universe
η = nB

nγ
∼ 10−10 (with photon number density nγ and baryon density nB).

This requires (with Sakharov) a violation of baryon number, Charge/Charge-
Parity (“C”, “CP”) violation, and thermal non-equilibrium due to the ex-
pansion of the universe and/or a phase transition. These are conditions one
finds in SM physics, but it turns out that again “Beyond the SM” physics
is required to get realistic estimates. All this invites for model constructions,
though again this allows for quite a few different realizations. Models trying
to explain many or even all known observational facts then might contain the
decisive clue how to go “beyond”. The sound scientific principle “divide and
impera” does not bless such a procedure, but unfortunately we cannot per-
form experiments with our universe. Approaching the Planck scale, of course,
the big bang theory, even with inflation, loses its meaning and a deeper un-
derstanding of quantum gravity and of its connection to elementary particle
physics is required. String theory, proposed to contain all the basic ingredients
of a fundamental theory, offers some fascinating pictures, but is still far away
from explaining early cosmology in a detailed dynamics. Loop quantum grav-
ity does not have a compatible universal claim and is even less developed. In
this situation a modest phenomenologically oriented procedure in going “be-
yond” seems to be appropriate. Unfortunately, these are sometimes painful
exercises, most of them without long-term merits. One can only hope that a
few of them will survive in a more complete theory.
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1 Introduction

Quantum field theory (QFT) aims at the synthesis of quantum physics with
the principles of classical field theory, in particular the principle of locality.
Its main realm is the theory of elementary particles where it led to a far-
reaching understanding of the structure of physics at subatomic scales with
an often amazingly good agreement between theoretical predictions and ex-
periments. Typical observables in QFT are current densities or energy flow
densities which correspond to what is measured in particle physics detectors.
The original aim of QFT was to compute expectation values and correlation
functions of the observables, and to derive scattering cross sections in high-
energy physics. In the course of development, QFT has widened its scope,
notably towards the inclusion of gravitational interactions.

The purpose of this contribution is to take stock and to comment on
the present status, the concepts and their limitations, and the successes and
open problems of the various approaches to a relativistic quantum theory
of elementary particles, with a hindsight to questions concerning quantum
gravity and string theory.

Quantum field theory rests on two complementary pillars. The first is
its broad arsenal of powerful modeling methods, both perturbative and con-
structive. These methods are based on the gauge principle, and have been
tremendously successful especially for the modeling of all the interactions of
the standard model of elementary particles. The perturbative treatment of
the standard model and its renormalization, as well as lattice approximations
of quantum chromodynamics (QCD), give enormous confidence into the basic
correctness of our present understanding of quantum interactions. (For the
impressive phenomenological support for the standard model, we refer to the
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contribution by Dosch to this book.) Despite these successes, however, estab-
lishing the standard model (or part of it) as a mathematically complete and
fully consistent quantum field theory remains an unsettled challenge, as will
be explained in the sequel.

The second pillar of QFT are axiomatic approaches, putting the theory on
a firm conceptual ground, which have been developed in order to understand
the intrinsic features of a consistent QFT, irrespective of its construction.
In these approaches, the focus is set on the fundamental physical principles
which any QFT should obey, and their axiomatic formulation in terms of the
observable features of a theory is addressed.

In fact, several such axiomatic approaches, which have been shown to be
partially but not completely equivalent, are pursued. None of them indicates
a necessary failure or inconsistency of the framework of QFT. (Of course, this
does not mean that a realistic QFT should not include new Physics, say at
the Planck scale, cf. Sect. 8.)

2 Axiomatic Approaches to QFT

Axiomatic QFT relies on the fact that the fundamental principles which every
quantum field theoretical model should satisfy are very restrictive. On the one
hand this is a great obstacle for the construction of models, on the other hand
it allows to derive a lot of structural properties which a QFT necessarily has.
They often can be tested experimentally, and they provide a criterion whether
a construction of a model is acceptable.

The main principles are

• the superposition principle for quantum states, and the probabilistic
interpretation of expectation values. These two principles together are im-
plemented by the requirement that the state space is a Hilbert space,
equipped with a positive definite inner product.

• the locality (or causality) principle. This principle expresses the absence of
acausal influences. It requires the commutativity of quantum observables
localized at acausal separation (and is expected to be warranted in the per-
turbative approach if the action functional that determines the interaction
is a local function of the fields).

In addition, one may (and usually does) require

• covariance under spacetime symmetries (in particular, Lorentz invariance
of the dynamics) and

• stability properties, such as the existence of a ground state (vacuum) or
of thermal equilibrium states.

The critical discussion of these principles themselves (“axioms”) is, of course,
itself an issue of the axiomatic approaches. For a review, see [1]. Various ax-
iomatic approaches (Wightman QFT, Euclidean QFT, Algebraic QFT) may
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differ in the technical way the principles are formulated. Several theorems
establishing (partial) equivalences among these approaches have been estab-
lished, such as the Osterwalder–Schrader reconstruction theorem [2] stating
the precise prerequisites for the invertibility of the passage from real-time
QFT to Euclidean QFT (“Wick rotation”), or the possibility to recover local
fields from local algebras [3].

In the Wightman formulation, one postulates the existence of fields as
operator-valued distributions defined on a common dense domain within a
Hilbert space. The field operators should commute at space-like distance and
satisfy a linear transformation law under the adjoint action of a unitary
representation of the Poincaré group. Moreover, there should be a unique
Poincaré invariant vacuum state which is a ground state for the energy oper-
ator. The assumption of local commutativity may be relaxed admitting anti-
commutativity for fermionic fields. One may also relax the assumption of the
vacuum vector, retaining only the positivity of the energy (unless one is inter-
ested in thermal states) in order to describe charged states; in the algebraic
approach, such theories are most advantageously regarded as different repre-
sentations (superselection sectors) of the same field algebra, originally defined
in the vacuum representation, see below.

Due to the restrictive character of these principles, they typically are vi-
olated in intermediate steps of approximation schemes. One often has to in-
troduce auxiliary fields without a direct physical meaning as observables.

As an illustration, consider the Dirac equation featuring a charged electron
field coupled to the electromagnetic field:

iγμ(∂μ + ieAμ(x))ψ(x) = mψ(x) . (1)

The Fermi field ψ(x) satisfies anti-commutation relations and can therefore
not be an observable field strength subject to causality. The vector potential
Aμ(x) is already in the classical theory not an observable. Related to the gauge
arbitrariness, the vector field cannot be covariantly quantized on a Hilbert
space with a probabilistic interpretation. (Other problems related with the
promotion to QFT of classical field products, appearing in evolution equations
such as (1), will be considered later.)

The general principles can therefore not be applied to the objects of basic
relations such as (1). The principles rather apply to the physical sector of
the theory where the typical fields are current and stress–energy densities or
electromagnetic fields, such as

jμ = ψ̄γμψ, T μν = T μν(ψ,A), Fμν = ∂μAν − ∂νAμ . (2)

These fields, corresponding to observable quantities, should be well-defined in
a QFT, admitting that the individual quantities on the right-hand sides of (2)
turn out to be very ill-defined.

In this spirit, the axiomatic approaches focus directly on the observable as-
pects of a theory, which have an unambiguous and invariant physical meaning,
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and which should be computed in order to compare with experiment. They
thus strive to develop analytic strategies to extract these quantities from a
given theory. For example, the particle spectrum emerges in terms of poles in
renormalized correlation functions, or in terms of the spectrum of the time
evolution operator, rather than as an input in terms of a classical action. The
Haag–Ruelle scattering theory showing how the space of scattering states (and
its structure as a Fock space) is intrinsically encoded, and how cross sections
are obtained as asymptotic limits of correlations, was one of the first successes.

The power of the axiomatic approach resides not least in the ability to
derive structural relations among elements of the theory without the need to
actually compute them in a model. These relations are recognized as necessary
consequences of the axioms. The most familiar examples are the PCT theorem
and the Spin-Statistics theorem, which arise from functional identities among
the Wightman functions due to covariance, energy positivity and locality.

Another example is the discovery (“Doplicher–Haag–Roberts theory”) of
the coherence among the intrinsic data relating to the superselection structure
(charge structure). To value this approach, it is important to note that if one
assumes (as one usually does) the presence of unobservable charged fields in
a theory, these will typically “create” charged states from the vacuum state
Ω. As a specific example,

Ψ = ψ(f)Ω (3)

is an (electrically charged) fermionic state if ψ(f) =
∫

d4xf(x)ψ(x) is an
(electrically charged) Fermi field smeared with some function f . These states
cannot be created by observable fields such as those in (2), and their charge can
be distinguished by looking at suitable characteristics of the state functional

O �→ ωΨ (O) ≡ (Ψ , O Ψ) (4)

as the local observables O vary, e.g., when the charge operator Q is
approximated by integrals over the charge density j0(x). States of different
charge belong to inequivalent representations (superselection sectors) of the
observables. The DHR theory provides the means to study charged sectors
intrinsically, i.e. without the assumption of charged fields creating them.

More recently, the DHR theory culminated in the proof (“Doplicher–
Roberts reconstruction”) that the observables along with their charged repre-
sentations in fact determine an algebra of charged unobservable fields trans-
forming under a global symmetry group, which create charged sectors from
the vacuum and among which the observables are the invariants under the
symmetry [4]. Indeed, the presence of Fermi fields, although these do not cor-
respond to observable quantities, can be inferred (and their conventional use
can be justified) from the existence of fermionic representations of the bosonic
fields of the theory.

At least the relevance of global symmetry as the origin of charged sec-
tors has thus been derived from the physical principles of QFT. At the same
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time, the way how geometric properties of spacetime enter this analysis shows
clearly why the analogous conclusion fails in low-dimensional QFT. Here, the
charge structure turns out to be much richer, opening the way to a much
broader symmetry concept beyond global symmetry groups.

In realistic models of QFT, the most important symmetry concept is that
of local gauge groups, to which we devote a section of its own below. Unfor-
tunately, local gauge symmetry is not covered by the DHR theory.

Axiomatic approaches also allow to investigate the infrared problem of
theories containing electromagnetism. The infrared problem is due to the fact
that the mathematical description of particle states as eigenstates of the mass
operator

PμP
μ Ψ = m2 Ψ (5)

(which is the starting point of the Haag–Ruelle scattering theory) cannot be
used for particles which carry an electric charge. It was proven under very
general conditions [5] that electrically charged sectors contain no eigenstates
of the mass operator. Instead it turns out to be physically more appropriate to
use so-called “particle weights” rather than states which share many properties
with the latter but are not normalizable [6].

A more pragmatic way out is the artificial introduction of a photon mass as
a regulator. One computes the cross sections in the auxiliary theory and takes
the limit of vanishing photon mass for suitable inclusive cross sections (where
“soft” photons, i.e. photons below an arbitrary small, but finite energy in the
final state, are not counted) at the very end. On the conceptual level, this
method involves an exchange of limits. Namely, scattering theory in the sense
of Haag and Ruelle amounts to look at distances which are large compared
to the Compton wavelengths of the particles. The physically relevant limit for
scattering of electrically charged particles should therefore be to perform first
the limit for the photon mass and then to go to large distances. As was empha-
sized by Steinmann [7], it is doubtful whether the limits may be exchanged.

The section about axiomatic approaches should not be concluded
without the remark that the complete construction of models fulfilling all
required principles has been achieved with methods described in Sect. 6, al-
though presently only in two- and three-dimensional spacetime (polynomial
self-interactions of scalar fields, Yukawa interactions with Fermi fields).

Low-dimensional models are of interest as testing grounds for the
algebraic methods and concepts of axiomatic approaches, and to explore
the leeway left by the fundamental principles. Apart from that, since string
theory can in some respect be regarded as (a ten-dimensional “target space
re-interpretation” of) a conformal QFT in two dimensions, the exact control
available for a wealth of these models could thus indirectly provide insight
into higher-dimensional physics.

Conformally invariant theories in two dimensions have been constructed
rigorously (and partially classified [8]) by methods of operator algebras, espe-
cially the theory of finite index subfactors [9]. It is here crucial that a “germ”
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of the theory is given, such as the subtheory of the stress-energy tensor field,
and is verified to share certain algebraic features. Then any local and co-
variant QFT which contains this subtheory is strongly constrained, and can
be constructed from certain data associated with the subtheory. Even if the
“germ” (as is usually the case) can be realized as a subtheory of some aux-
iliary free field theory, the new theories thus constructed extend the relevant
subtheory but not this auxiliary theory, and therefore cannot be considered
as free theories in their turn.

Quite recently, a novel scheme for the construction of quantum field the-
ories has been developed in a genuinely operator algebraic approach, which
is not based on quantum fields and some classical counterpart, but on the
relation between the localization of quantum observables and their interpre-
tation in terms of scattering states. As a consequence of the phenomenon of
vacuum polarization, this relation is subtle since interacting local fields can
never create pure one-particle states from the vacuum. The basic new idea
stems from modular theory (see below) by which geometric properties such
as localization in causally independent regions and the action of Poincaré
transformations can be coded into “modular data” of suitable algebras.

Although this is not the place to introduce modular theory [10] to a gen-
eral audience, we wish to add a rough explanation. There is a mathematical
theorem that the pair of a von Neumann algebra and a (cyclic and separating)
Hilbert space vector determine an associated group of unitaries and an an-
tiunitary involution, the “modular data”, which have powerful algebraic and
spectral properties. In the case of algebras of covariant quantum observables
localized in a wedge region (any Poincaré transform of the region |c t| < x1)
and the vacuum vector, these properties allow to identify the modular data
with a subgroup of the Poincaré group and the PCT conjugation. The joint
data for several such wedge algebras generate the unitary representation of
the full Poincaré group. Exploiting this algebraic coding of geometry in the
opposite direction, it is in fact possible to construct a QFT by specifying
a distinguished vector in a Hilbert space and a small number of von Neu-
mann algebras, provided these are in a suitable “relative modular position”
to each other to warrant the necessary relations among their modular data
to generate the Poincaré group and ensure local commutativity and energy
positivity.

This opens an entirely new road for the non-perturbative construction of
QFT models [11]. As an example in two spacetime dimensions, algebras of pu-
tative observables localized in spacetime wedges can be constructed in terms of
one-particle states. Observables with bounded localization are then obtained
by taking intersections of wedge algebras. That this road indeed leads to the
desired construction of interacting theories with a complete interpretation in
terms of asymptotic particle states has been established [12] for a large class of
two-dimensional models with factorizing scattering matrices. Even though –
by lack of a priori knowledge of a nontrivial scattering matrix – a directly
analogous program in four dimensions is not available, the approach shows
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the advantage of constructing observables with poorer localization properties
in the first step, before identifying local observables as subalgebras of the
latter.

3 The Gauge Principle

It happens very often that complicated structures can be more easily accessed
by introducing redundant quantities. The extraction of the relevant informa-
tion then requires a notion of equivalence. In fundamental physics it is the
notion of a local interaction which forces the introduction of redundant struc-
tures. To ensure that the observable quantities do not influence each other at
a distance (causality), one wants to describe their dynamics by field equations
which involve only quantities at the same point. But it turns out that this is
possible only by introducing auxiliary quantities, such as gauge potentials in
electrodynamics. This difficulty already exists in classical field theory, and it
complicates considerably the structure of classical general relativity.

Classical gauge theories describe the interaction of gauge fields (under-
stood as connections of some principal bundle) and matter fields (described as
sections in associated vector bundles). The interaction is formulated in terms
of covariant derivatives and curvatures. (In this way, the rather marginal gauge
symmetry of Maxwell’s electrodynamics is turned into a paradigmatic sym-
metry principle determining the structure of interactions.) The combination

Dμ = ∂μ + ieAμ(x) (6)

providing the coupling between the fields in (1) is a covariant derivative which
ensures that the equation is invariant under the abelian gauge transformation

ψ(x) �→ eieα(x) ψ(x)
Aμ(x) �→ Aμ(x) − ∂μα(x) , (7)

i.e. Dμψ(x) transforms in the same way as ψ(x) itself, and the equation of mo-
tion (1) is preserved by the transformation. The electromagnetic field strength
tensor Fμν(x) in (2) is obtained through the commutator of two covariant
derivatives, i.e. geometrically speaking, the curvature.

The presence of this group of automorphisms (7) of the bundle (gauge
transformations) makes the description redundant, and only the space of or-
bits under the automorphism group corresponds to the relevant information.

Non-abelian gauge transformations generalize these structures by replacing
the charged field by a multiplet and the complex phase in (7) by an element
of a compact group in a matrix representation. Along with the appropriate
generalization of the Maxwell–Dirac action of quantum electrodynamics, one
arrives at a gauge covariant coupled system of equations of motion for the
charged fields and the gauge potentials. It is considered as the triumph of
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the gauge principle that these equations successfully describe most of the
dynamics and symmetries of standard model of elementary particles, provided
one chooses U(1)×SU(2)×SU(3) as the gauge group, and assigns appropriate
representations (“quantum numbers”) to the fermions. For a more detailed
account of the gauge symmetry of the standard model, we refer to Dosch’s
contribution to this book.

In QFT, the very concept of gauge theories is strictly speaking not well
defined, because of the singular character of pointlike localized quantities.
These singularities are absent in the lattice approximation (see Sect. 6). There
matter fields are attached to the lattice points, while gauge fields are, as
parallel transporters, attached to the links between them.

In the continuum, perturbation theory is used to deal with these singulari-
ties (see Sect. 5). In the cause of gauge theories, additional auxiliary structure
has to be invoked in order to be able to use the canonical formalism. Namely,
the Cauchy problem in gauge theories is not well posed because of the am-
biguities associated with time-dependent gauge transformations. Therefore
one has to introduce a gauge-fixing term in the Lagrangean which makes the
Cauchy problem well posed, and the so-called “ghost and antighost” fields
which interact with the gauge field in such a way that the classical theory is
equivalent to the original gauge theory. This auxiliary theory is quantized on a
“kinematical Hilbert space” H which is not positive definite. The observables
of the theory are then defined as the cohomology of the BRST transformation
s which is an infinitesimal symmetry of the theory with s2 = 0 (see, e.g., [13]).
More precisely, s is a graded derivation implemented as the graded commuta-
tor with a charge operator q satisfying q2 = 0, the observables are those local
operators that commute with q:

q A = Aq , (8)

physical states are those annihilated by it:

q Ψphys = 0 , (9)

and two physical states are equivalent if they differ by a state in the image
of it:

Ψ1 − Ψ2 ∈ qH . (10)

The BRST method ensures that the equivalence classes of physical states form
a positive-definite Hilbert space

Hphys = Ker q
/

Im q , (11)

and the observables are well-defined operators on Hphys.
We will see in Sect. 5 that within perturbation theory, BRST gauge theo-

ries are distinguished by their good behaviour under renormalization.
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It is not clear how the gauge principle should enter the axiomatic
formulations. Namely, these approaches focus on the observables of a quantum
system, while gauge fields are per se unobservable. Put differently, one should
ask the question which observable features tell us that a QFT is a gauge
theory. In the abelian case, there is of course the characteristic long-range
nature of Gauss’ law, but there is no obvious equivalent in the non-abelian
case. Could there be, in principle, an alternative description of, say, QCD
without gauge symmetry?

There are, of course, experimental hints towards the color symmetry, rang-
ing from particle spectroscopy over total cross section enhancement factors to
“jets” in high-energy scattering. In algebraic QFT, the counterpart of these
observations is the analysis of the global charge structure of a theory, i.e. the
structure of the space of states.

The DHR theory of superselection sectors is precisely an analysis of the
charge structure entirely in terms of the algebra of observables. As we have
seen, it leads to the derivation of a symmetry principle from the fundamental
principles of QFT (see Sect. 2), but the result pertains to global symmetries
only. The case of local gauge symmetries is still open. Yet, a local gauge theory
without confinement should possess charged states in non-trivial representa-
tions of the gauge group. If the theory has confinement, but is asymptotically
free, then its gauge group should become visible through the charge structure
of an appropriate short-distance limit of the observables [1]. It is therefore
expected that gauge symmetry, if it is present, is not an artefact of the per-
turbative description but an intrinsic property coded in algebraic relations
among observables.

4 The Field Concept

It is the irony of quantum field theory that the very notion of a “quantum
field” is not at all obvious. The field concept has been developed in classical
physics as a means to replace the “action at a distance” by perfectly local
interactions, mediated by the propagating field. Classical fields, such as the
electromagnetic fields, can be observed and measured locally. On the other
hand, in quantum field theory one usually interprets measurements in terms
of particles. The fields used in the theory for the prediction of counting rates
appear as (very useful, undoubtedly) theoretical constructs, imported from
the classical theory. But what is their actual status in reality?

The conventional particle interpretation requires that a given state be-
haves like a multi-particle state at asymptotic times. A closer look shows that
this feature may be expected only in certain circumstances, say, in a transla-
tionally invariant theory in states close to the vacuum. Once one leaves these
situations, neither the concept of a vacuum (ground state of the energy) nor
that of particles (eigenstates of the mass operator) keep a distinguished mean-
ing, as may be exemplified by the occurrence of Hawking radiation, by the
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difficulties of a notion of particles in thermal states, and last but not least, in
the infrared problem.

The field concept, on the other hand, keeps perfect sense in all known
cases. Fields may be understood, generally speaking, as a means to interpret
quantum theoretical objects in geometrical terms. In Minkowski space, they
may assume the form of distributions whose values are affiliated to the al-
gebras of local observables and which transform covariantly under Poincaré
transformations. Here, the test function f plays the role of a “tag” which keeps
track of the localization of the associated field operator ϕ(f). In a generally
covariant framework (see Sect. 8.1), fields can be viewed abstractly as natural
transformations from the geometrically defined functor which associates test
function spaces to spacetime manifolds, to the functor which associates to
every spacetime its algebra of local observables [14].

On the mathematical side, the field concept leads to hard problems in
the quantum theory. They are due to the quantum fluctuations of localized
observables which diverge in the limit of pointlike localization. But in per-
turbation theory as well as in algebraic QFT one has learned to deal with
these problems, the most difficult aspect being the replacement of ill-defined
pointwise products by the operator product expansion.

In free field theory on Minkowski space, one associates to every particle a
field which satisfies the field equation. While in this case, the use of the term
“particle” for the associated field is perfectly adequate, the analogous practice
for fields which appear in the classical equation of motion of interacting field
theory is justified only in special cases. It may happen (this seems to be the
case in asymptotically free theories) that in a short distance limit, the analogy
to the particle–field correspondence of free field theory becomes meaningful.
In theories which become free in the infrared limit, a similar phenomenon
happens at large distances; then the scattering data can be directly interpreted
in terms of these distinguished fields.

In general, however, besides the observable fields one uses a whole zoo of
auxiliary fields which serve as a tool for formulating the theory as a quan-
tization of a classical Lagrangean field theory. Such a formulation may not al-
ways exist nor must it be unique. In the functional (“path integral”) approach
to QFT, such auxiliary fields (which are not coupled to external sources) may
be regarded as mere integration variables. The most powerful functional tech-
niques involve deliberate changes in such variables (introduction of “ghost
fields”, BRST transformations or the renormalization program by successive
integration over different energy scales). While this is by far the most suc-
cessful way to construct models, at least in the sense of perturbation theory,
the intrinsic physical significance of these auxiliary fields is unclear, and it
would be misleading to think of them in terms of particles in a similar way as
discussed before.

The delicacy of the field concept in quantum theory, contrasted with the
clarity of the classical field concept, may be just one aspect of the more fun-
damental question: Is a quantum theory necessarily the quantization of a
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classical theory? Does it always have a classical limit (think of QCD, for the
sake of definiteness), and can it be reconstructed from its classical limit?

5 The Perturbative Approach to QFT

The main approximative schemes for relativistic QFT are Perturbation The-
ory (or other expansions like the 1/N approximation) and lattice approxi-
mations of Euclidean functional integrals. All these approximations of QFT
are based on the idea of “quantization of a classical field theory”. Pertur-
bation theory proceeds by producing a formal power series expansion in a
coupling constant, hoped to be asymptotic to a QFT yet to be constructed,
and therefore requires weak couplings; lattice approaches can in principle also
treat strongly coupled regimes, using cluster expansions or Monte Carlo sim-
ulations; although numerical simulations of lattice QFT are limited to rather
coarse lattices, aspects of the continuum and infinite volume limits can be
studied. As far as comparisons are possible, there seems to be little doubt
about the basic consistency among different approaches.

Our discussion in this section will mainly pertain to Perturbation Theory.
This is a general scheme applicable to any QFT with a “free” dynamics per-
turbed by an “interaction” which is considered as a small correction. Locality
requires the interaction to be described by a local density, called the inter-
action Lagrangean. Characteristic limitations to the scheme arise, however,
through various sources which are described below.

First of all, there is the need to “renormalize” the single terms of the
perturbative expansion. This is the procedure to fix the parameters of the
theory to their physical values, thereby also avoiding any infinities that occur
if one proceeds in the traditional way using “bare” parameters. One must
demand that renormalization can be achieved without the introduction of in-
finitely many new parameters which would jeopardize the predictive power
of the theory. This necessity restricts the admissible form of the interaction
Lagrangean. Provided the polynomial order in the fields is limited (depend-
ing on the spacetime dimension, and on the spins of the fields involved),
a simple “power counting” argument (controlling the behaviour of poten-
tially divergent terms in terms of the momentum dependence of propaga-
tors and interactions) ensures renormalizability. For spins larger than 1, there
are no interactions in four dimensions which are renormalizable by power
counting. (This fact also prevents the direct incorporation of gravitational
fields into the perturbative scheme.) In the presence of additional symmetries
which ensure systematic cancellations of divergent terms, renormalizability
might be shown in spite of a failure of the power counting criterium (but in
supersymmetric perturbative gravity the desired effect seems to fail beyond
the first few lowest orders).

For the theory of elementary particles, experiments have revealed the
prime relevance of vector (spin 1) couplings, starting with parity violation
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in the weak interaction which could be explained by V–A but not by scalar
and tensor couplings. The idea that vector couplings are mediated by vector
fields lies at the basis of the standard model. For interactions involving mass-
less vector fields, however, there is a conflict between locality, covariance and
Hilbert space positivity, while massive vector fields do not possess couplings
which are renormalizable by power counting. This is due to the fact that the
necessary decoupling of modes which otherwise would give rise to states of
negative norm changes the large-momentum behaviour of the propagator.

The only successful way to incorporate vector fields into a perturbative
QFT is to treat them as gauge fields, with couplings which are necessarily
gauge couplings (see Sect. 3). Thus, the gauge principle imposes itself through
the inherent limitations of the perturbative scheme [15]. However, it brings
about several new problems which have to be solved in turn: the unphysi-
cal degrees of freedom can be eliminated by cohomological methods (“BRST
theory”, see Sect. 3) which at the same time can be used to systematically
control the preservation of gauge invariance. While gauge invariance forbids
the introduction of explicit mass terms for the vector fields, masses can be
generated by coupling to a Higgs field with “spontaneous symmetry break-
down” (see the next section for more details). That this can indeed be done
in a way which keeps the theory renormalizable in spite of the bad power
counting behaviour of massive propagators is one of the great achievements
of the perturbative standard model.

In the process of renormalization there may appear “anomalies” which
break symmetries present in the classical theory. While anomalies per se are
not problematic (and may even be phenomenologically desirable), anomalies
of the gauge symmetry will spoil the renormalizability. Their absence has
therefore to be imposed as a consistency condition. In chiral gauge theories,
it can be achieved by a suitable choice of representations of the gauge group
(particle multiplets).

The circumstance that the “cascade of problems” outlined in the preceding
paragraph can in fact be consistently overcome within the setting of pertur-
bative QFT, and in excellent agreement with the phenomenology of High En-
ergy Physics, gives enormous confidence in the basic correctness of the general
framework. The standard model precisely exhausts the leeway admitted by the
perturbative approach.

Besides the renormalization problems caused by ultraviolet singulari-
ties, perturbative QFT has infrared problems, when the free theory used as
the starting point contains massless particles. In quantum electrodynamics
(QED), the infrared problem can be traced to the computational use of
particles with sharp masses which is illegitimate in the presence of massless
particles (see Sect. 5).

A more severe kind of infrared problem arises in theories like QCD; here
it is due to the fact that the fields (quarks and massless gluons) do not cor-
respond to the massive particles (hadrons) presumably described by the full,
non-perturbative theory. A fully consistent solution of these problems, i.e.
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the confinement of hadronic constituents, can therefore not be expected in a
perturbative treatment. If the confinement problem can be addressed at all,
then only by non-perturbative methods (see the next section). However, ef-
fects like the deviations from naive scaling of hadronic structure functions
have been successfully predicted by perturbative methods.

The infrared problems of perturbation theory may be circumvented by
the use of interactions which are switched off outside some compact region
of spacetime. This leads to the concept of causal perturbation theory which
was developed by Epstein and Glaser [16] on the basis of previous ideas of
Stückelberg and Bogoliubov. This approach is crucial for a consistent treat-
ment of QFT on curved spacetimes. On Minkowski space it allows a pertur-
bative construction of the algebra of observables. The infrared problem then
is the physical question on the states of the theory, such as the existence of a
ground state, the particle spectrum, thermal states etc.

Whether one considers the rationale for the gauge principle in the standard
model outlined above (see also Sect. 3) to be logically cogent depends on the
implicit expectations one imposes on the formal structure of a QFT. In any
case, the standard model is by no means uniquely determined by these con-
straints. QED (given by the gauge group U(1)) and QCD (given by the gauge
group SU(3)) are completely self-consistent subtheories (i.e., on the level of
a formal perturbative expansion); the subtheory of electro-weak interactions
(given by the gauge group U(1)×SU(2) with parity-violating representations)
is consistent provided the gauge anomalies are eliminated by suitable charged
multiplets. The gauge groups themselves may be considered as free parameters
of a model, as long as anomaly cancellation is possible.

The possibility of grand unification and/or supersymmetric extensions is
an aesthetic feature of the standard model, for which, however, there is no
fundamental physical need, nor is it required for reasons of mathematical
consistency. QFT alone presumably cannot answer the question why there
are so many “accidental” free parameters (notably the mass matrices or
Yukawa couplings, according to the point of view) in the theory of fundamental
interactions.

To conclude this section, we should point out that, as far as model build-
ing is concerned, the limitation to renormalizable interactions might be too
narrow. There are perturbatively non-renormalizable model theories in which
non-trivial fixed points have been established, meaning that the theories are
non-perturbatively renormalizable [27].

6 The Constructive Approach to QFT

In spite of its tremendous numerical success, the perturbative scheme to eval-
uate QFT approximately suffers from a severe defect: it provides answers only
in the form of formal, most likely divergent power series. The usual answer to
this is that the series is an asymptotic expansion. But aside from the problem
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where to truncate the series in order to convert the formal power series into
numbers, there is the fundamental question: asymptotic to what? There are
well-known cases (such as the so-called “Φ4

4 theory” of a self-interacting scalar
field Φ in four spacetime dimensions) in which the perturbation expansion, ac-
cording to the accumulated knowledge, is not an asymptotic expansion to any
QFT and it may very well be that the most successful of all QFTs, quantum
electrodynamics, also suffers from this disease.

The axiomatic approach, on the other hand, does not answer the ques-
tion whether the axioms are not empty, i.e. whether any non-trivial QFTs
satisfy them.

The constructive approach is in principle addressing both of these
problems. On the one hand it attempts to show that the axiomatic frame-
work of QFT is not empty, by mathematically constructing concrete non-
trivial examples satisfying these axioms, and on the other hand it provides
non-perturbative approximation schemes that are intimately related to the
attempted mathematical constructions; the prime example are the lattice ap-
proximations to QFTs. Even where the goal of a mathematical construction
of models satisfying all the axioms is not (yet) attained, this kind of approx-
imative scheme differs in a fundamental way from the formal perturbative
expansions: it produces approximate numbers which, if all goes right, con-
verge to a limit that would be the desired construction.

The constructive approach (see for instance [17]) is based on a modification
and generalization of Feynman’s “sum over histories”. The main modification
is the transition from the indefinite Lorentz metric of Minkowski spacetime to
a Euclidean metric; the return to the physical Lorentzian metric is expected
to be manageable via the so-called “Osterwalder–Schrader reconstruction”
[2] (see Sect. 2). The approach starts from a classical field theory, with dy-
namics specified by a Lagrangean. Formally one then proceeds by writing
an ill-defined functional integral over all field configurations, weighted with a
density given in terms of the classical action S =

∫ L dx depending on some
fields collectively denoted by Φ; the expectation value of an “observable”O[Φ]
(a suitable function of the fields) would be given by

〈O〉 =
1
Z

∫

DΦ O[Φ] e−S[Φ] . (12)

Here the symbolDΦ is supposed to indicate a (non-existing) Lebesgue measure
over the set of all field configurations Φ and Z a normalization constant.

To make mathematical sense of this, the theory first has to be “regularized”
by introducing a finite spacetime volume and deleting or suppressing high fre-
quencies (by an “ultraviolet cutoff”). The job of the constructive field theorist
then consists of controlling the two limits of infinite volume (“thermodynamic
limit”) and restoring the high frequencies (“ultraviolet limit”) by removing
the cutoff; the latter can only be done if the parameters of the Lagrangean
(and the observables of the theory) are made cutoff dependent in a suitable
way – this procedure is the non-perturbative version of renormalization.
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The constructive program has been completed only in spacetime dimen-
sions less than four, but at least in these unrealistic cases it has shown that
axiom systems such as Wightman’s are not vacuous for interacting theories.
In these low-dimensional cases it has also given a justification to the pertur-
bative expansion by showing that it produces indeed an asymptotic expansion
to the constructed QFTs.

A particularly useful way of introducing an ultraviolet cutoff consists in
replacing the spacetime continuum by a discrete structure, a lattice. Together
with the introduction of a finite spacetime volume one thereby reduces QFT
to a finite dimensional “integral” (the quotation marks indicate that this
“integral” is just some linear form for the fermionic degrees of freedom). In
other words, QFT has been reduced to quadratures. The advantage of this
is that QFT thereby becomes amenable to numerical evaluation; there is a
whole industry of lattice field theory exploiting this fact, most notably in
approximately evaluating the theory of strong interactions, QCD. The subject
of lattice (gauge) field theory has been covered in detail in several books [18].

But the lattice approach is very important also for more fundamental
reasons: it is the only known constructive approach to a non-perturbative
definition of gauge field theories, which are the basis of the standard model.
The constructive approach and the numerical procedures to extract infinite
volume and continuum information from finite lattices are closely parallel:

Typically a lattice model produces its own dynamically generated scale ξ
(“correlation length”) which, unlike the lattice spacing, has a physical mean-
ing. It may be defined – after the thermodynamic limit has been taken – by
the exponential decay rate of suitable correlation functions, such as

ξ = − lim
n→∞

1
|n| ln〈Φ(0)Φ(n) 〉 , (13)

where Φ(·) stands for a field of the lattice theory and n is a tupel of integers
labeling lattice points.

In a finite volume version, finite volume effects disappear exponentially
fast, like exp(−L/ξ), with the size L of the volume. The thermodynamic limit
can then be controlled numerically and often also mathematically, borrowing
techniques from classical statistical mechanics.

The next step is to identify the dimensionless number ξ with a physi-
cal standard of length (e.g. some appropriate Compton wave length, say 1
fm), such that ξ lattice spacings equal 1 fm. The lattice points can then be
relabelled by xi = (ni/ξ) fm where the coordinates xi have now acquired the
dimension of length. Taking the lattice spacing to zero (i.e. taking the contin-
uum limit) then amounts to sending the correlation length to infinity while
keeping xi fixed. The n-point correlation functions of a field in the continuum
should therefore be defined as limits of the form

〈ϕ(x1) . . . ϕ(xn) 〉 = lim
ξ→∞

〈Φ([x1]ξ) . . . Φ([xn]ξ) 〉 Z(ξ)−
n
2 (14)

where x = [x] fm and ϕ(x) is the resulting continuum quantum field.
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So the continuum limit requires to drive the parameters of the system
(such as the coupling constants) to a point of divergent correlation length,
i.e. a critical point in the language of statistical mechanics. Z(ξ) is a “field
strength renormalization” needed to prevent the limit from being 0.

This procedure makes it clear that the lattice spacing is a derived dynam-
ical quantity proportional to 1/ξ, not something to be specified beforehand.
The inverse of the correlation length in the chosen physical units is the mass
gap of the theory in physical units. The procedure of choosing the dynam-
ically generated scale as the standard of length or mass leads generally to
a phenomenon usually attributed to special features of perturbation theory:
“dimensional transmutation”. Let us explain this in a simple case, QCD with
massless quarks: the only parameter of the lattice theory is the gauge cou-
pling; since we find the continuum limit at the (presumably unique) critical
point, this ceases to be an adjustable parameter. Instead we obtain a free
scale parameter by the freedom of choosing a certain multiple of the corre-
lation length as the standard of length (or a certain multiple of the inverse
correlation length as the standard of mass). So we have traded a dimensionless
parameter (the coupling constant) for a parameter with dimensions of a mass
(e.g. the mass of the lightest particle).

Quite generally the particle spectrum of any QFT is extracted by look-
ing at exponential decay rates of suitable correlation functions; when applied
to QCD the lattice approach has been reasonably successful in reproducing
the observed spectrum of baryons and mesons. It has also been successfully
extended to the computation of weak decay matrix elements of hadrons. All
this gives us confidence that QCD is indeed an appropriate description of the
strong interactions.

On the side of mathematically rigorous construction, the success with
gauge theories in four dimensions has been much more modest, even though
some impressive work towards control of the continuum limit has been done
by Balaban [19]. The problem is one of the seven “millenium problems” for
whose solution the Clay Mathematics Institute has offered a prize of one mil-
lion dollars [20].

There is another issue where the constructive approach via a spacetime lat-
tice has helped to understand a fundamental property of the standard model:
this is the “Higgs mechanism” of mass generation, whose phenomenological
importance is made clear in the contribution by Dosch in this book. This mech-
anism comes into play when gauge fields are coupled to a scalar (“Higgs”) field
with a quartic self-interaction potential, symmetric around zero but with an
orbit of minima away from zero.

Textbooks normally call this an instance of “spontaneous symmetry break-
ing”, but this term is somewhat misleading and not really appropriate. On the
lattice, gauge fixing is not necessary, and it is a general fact known as Elitzur’s
theorem [21] that it is not possible to spontaneously break local gauge invari-
ance. The local gauge freedom prevents the occurrence of long range order
since there is no energy penalty for locally “rotating” any fields. The Higgs
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mechanism appears instead as a conspiracy between the gauge fields and the
fluctuations of the Higgs field along the orbit of its minimal potential energy,
making the transverse components of the gauge field massive; no unphysical
massless components remain in the spectrum [22, 23].

It has been pointed out by ’t Hooft [24] that from this point of view
there is no fundamental difference between confinement, as seen in QCD, and
the Higgs mechanism, as it operates in the electroweak part of the standard
model. The massive gauge bosons (the W and Z particles) may, for instance,
be viewed as permanently bound combinations of bare gauge fields and Higgs
constituents (not really particles), and similarly for the massive fermions, just
as hadrons are viewed as permanently bound compounds of quarks and gluons.
This point of view was worked out in more detail by Fröhlich, Morchio and
Strocchi [25].

Once a gauge fixing is introduced, as is necessary in perturbation theory,
in general it does no longer make sense to speak of spontaneous breaking of
gauge invariance, since this invariance is broken explicitly. There are, however,
classes of gauge fixings in which the global part of the symmetry remains
intact. In these circumstances it remains meaningful to ask whether this global
symmetry is spontaneously broken; this is then a problem to be studied with
the methods of statistical mechanics. The answer, it turns out, depends both
on the spacetime dimension and the precise form of the gauge fixing. In four
dimensions, for an abelian model, only one particular gauge fixing (the so-
called “Landau gauge”) has been found to lead to spontaneous breaking of the
remnant gauge symmetry [26]. From the point of view of physics, on the other
hand, all versions, with different or no gauge fixing, should be equivalent; in
this perspective spontaneous symmetry breaking is thus nothing but a gauge
artefact.

7 Effective Quantum Field Theories

In applications one often encounters the term “effective field theory”. We can
distinguish three different meanings:

(1) The result of an exact renormalization group (RG) transformation applied
to a QFT in the sense discussed before.

(2) An approximate QFT that is supposed to give a good approximation to
a certain assumed QFT.

(3) A phenomenological theory that is not to be taken seriously beyond a cer-
tain energy; in this case it does not matter if the theory arises from a bona
fide QFT by some approximation or by integrating out high-momentum
modes.

The notion (1) is at least conceptually very clear. The idea is to start
with an already constructed well-defined QFT and then to apply an exact
“Renormalization Group step”. This means that one performs the part of the
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functional integral (which has been made well-defined before) corresponding
to the “hard” (i.e. high momentum, fast varying) part of the fields, formally

exp(−Seff [Φsoft]) =
1
Z

∫

DΦhard exp(−Seff [Φsoft + Φhard]) (15)

and also performs some rescalings of fields and spacetime variables.
The combination of the integration in (15) and this rescaling constitutes one
renormalization group step. The resulting “effective theory” describes exactly
the same physics as the original full theory when applied to the soft (low
momentum, slowly varying) degrees of freedom. It is clear that this may be
“effective”, but it is not efficient because it requires control of the full theory
before one can even start.

Of course, the RG step sketched above can be iterated; thereby one gen-
erates the semigroup usually called renormalization group.
A more useful variation of the RG idea is used in constructive QFT (see for
instance [19, 27]). Here one starts with a regularized version of the theory,
defined with a high-momentum cutoff; one then performs a number of RG
steps as indicated above until one reaches a predefined “physical scale” lead-
ing to an effective low-energy theory still depending on the cutoff. In the final
step one attempts to show that the effective low-energy theory has a limit
as the cutoff is removed; this requires adjusting the parameters of the start-
ing “bare action” such that the effect of the increasing number of successive
renormalization group steps is essentially compensated.

The notion (2) is widely used to describe the low-energy physics of QCD
(assumed to exist as a well-defined QFT even though this has not been shown
so far). Specific examples are

• “Effective Chiral Theory” [28] to describe the interactions of the light
pseudoscalar mesons,

• “Heavy Quark Effective Theory” (HQET) [29], in which the effect of the
heavy (charmed, bottom and top) quarks is treated by expanding around
the limit where their masses are infinite,

• “Nonrelativistic QCD” (NRQCD) [30, 31] used in particular for bound
state problems of heavy quarks.

For an overview over various applications of these ideas see [32].

Examples for notion (3) are the old Fermi theory of weak interactions
(before the electro-weak part of the standard model was known). A more
modern example is presumably the standard model itself, because it contains
the scalar self-interacting Higgs field which suffers from the presumed triviality
of Φ4

4 theories; the same applies to any other model involving Higgs fields. One
often finds the words “something is only an effective theory”; this expresses
the fact that the author(s) do not want to claim that their model corresponds
to a true QFT.
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8 Gravity

Given the state of affairs for the standard model of elementary particles,
being comfortably well described by QFT as outlined in the previous sections,
the “missing link” in our present conception of fundamental physics is the
incorporation of the gravitational interaction into quantum physics (or vice
versa).

For a review of classical gravity, we refer to the contribution by Ehlers to
this book. Empirically, gravity is a theory valid at macroscopic scales only,
and it is well known that, if extrapolated to very small scales (the Planck
length), it becomes substantially incompatible with the quantum uncertainty
principle (“quantum energy fluctuations forming virtual black holes”). This
suggests that at small scales gravity needs modification, although one might
as well argue conversely that at small scales gravity modifies quantum theory
(by acting as a physical regulator for the UV problems of QFT, or possibly in
a much more fundamental manner). The truth is not known, and one might
expect that neither quantum theory nor gravity will “survive” unaffected in
the ultimate theory.

Empirical evidence for this case is, of course, extremely poor due to the
smallness of the Planck length. The most promising candidates for empiri-
cal evidence about effects of quantum gravity are astronomical observations
of matter falling into black holes, cosmological remnants of the very early
universe, or perhaps signals in accelerator experiments of “large extra dimen-
sions”, which in some theories are claimed to lead to an increase of the effective
Planck length to a size accessible at accelerator energies. On the theoretical
side, it is generally expected that black hole physics (Hawking radiation and
Bekenstein entropy) represents the crucial point of contact. It appears very
encouraging that both major approaches (string theory and canonical quan-
tum gravity, see below), in spite of their great diversity, make more or less
the same predictions on this issue. But it should be kept in mind that also
Hawking radiation of black holes is far from being experimentally accessible.

The attempt to incorporate the gravitational interaction into quantum
theory raises severe conceptual difficulties. Classical gravity being a field the-
ory, QFT is expected to be the proper framework; but QFT takes for granted
some fixed background spacetime determining the causal structure, as one of
its very foundations, while spacetime should be a dynamical agent in gravity
theory. This argument alone does not preclude the logical possibility of per-
turbative quantization of gravity around a fixed background, but on the other
hand, the failure of all attempts so far which split the metric into a classical
background part and a dynamical quantum part (cf. Sect. 2) should not be
considered as a complete surprise or as a testimony against QFT.

On the other hand, the existing arguments against the quantization of
gravity within a conventional QFT framework are not entirely conclusive.
They are based on the most simple notion of renormalizability which de-
mands that the renormalization flow closes within a finite space of polynomial
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couplings, thus giving rise to the limitation by power counting. It is conceiv-
able, and there are indications that something in this way actually occurs (see
the contribution by Lauscher and Reuter to this book), that a renormalization
flow closes within a finite space of suitable non-polynomial Lagrangeans (which
are present in classical Einstein gravity anyway). In this case, the renormal-
ized theory also would contain only finitely many free parameters, and would
have the same predictive power as a theory with polynomial interactions.

Taking the geometrical meaning of gravitational fields seriously, it is clear
that the framework of QFT has to be substantially enlarged in order to ac-
comodate a quantum theory of gravity. It is questionable whether this can
be done by formal analogies between diffeomorphism invariance and gauge
symmetry.

8.1 QFT on Gravitational Background Spacetime

An intermediate step on the way towards a theory of quantum gravity is
a semiclassical treatment, where “matter” quantum fields are defined on
classical curved spacetimes. This situation brings along severe technical and
conceptual problems, since crucial tools of QFT in flat spacetime (energy–
momentum conservation, Fourier transformation and analyticity, Wick rota-
tion, particle interpretation of asymptotic scattering states) are no longer
available due to the lack of spacetime symmetries.

Considerable progress in this direction has been made notably concerning
the problem of the absence of a distinguished ground state (the vacuum). In
globally hyperbolic spacetimes, the ground state can be substituted by a class
of states (Hadamard states) which guarantee the same stability properties
of quantum fields, and allow for a similar general set-up of causal perturba-
tion theory as in flat space [33]. Of crucial importance is the incorporation
of the principle of general covariance. It is realized as a covariant functor
which associates to every globally hyperbolic spacetime its algebra of observ-
ables and which maps isometric embeddings of spacetimes to homomorphic
embeddings of algebras. The interpretation of the theory is done in terms of
covariant fields, which are mathematically defined as natural transformations
from a geometrically defined functor which associates to every spacetime its
test function space to the functor describing the QFT [14].

One may include into the set of quantum fields also the fluctuations of the
metric field. One then has to impose the consistency condition that the result
does not depend on the chosen split of the metric into a background field
and a fluctuation field (this is essentially Einstein’s equation in QFT). One
may hope to obtain in this way reliable information on the “back reaction”
of the energy of the quantum matter on the background. It remains, however,
the bad power counting behaviour of quantum gravity which might point to
limitations of the perturbative approach.
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8.2 Non-commutative Spacetime

Taking into account the expectation that localization should be an operational
concept which at very small scales is limited by the interference between quan-
tum and gravitational effects, models of non-commutative spacetimes have
been formulated which exhibit an intrinsic localization uncertainty. While
these are definitely not more than crude models, in which gravity is not itself
present but just motivates the localization uncertainty, it could be established
that they are compatible with QFT; contrary to widespread hopes, however,
the quantum structure of spacetime does not act as a “physical regulator” at
the Planck scale for the ultraviolet behaviour of QFT [34].

8.3 Canonical Quantum Gravity

Other approaches to quantum gravity focus on the purely gravitational self-
interaction. The most prominent ones, going under the name “Canonical
Quantum Gravity”, are built upon the geometric nature of classical gravity. In
these approaches, the dynamics of three-dimensional (space-like) geometries
is studied in a canonical framework. However, due to general covariance, the
dynamics turns out to be strongly constrained, giving rise to severe compli-
cations (see the contribution by Giulini and Kiefer to this book.)

Within the general framework of canonical approaches, loop quantum
gravity (LQG) has been pursued and developed furthest as a model for the
structure of quantum spacetime [35] (see also the contributions by Thie-
mann and by Nicolai and Peeters to this book). It is asserted that the model
can be supplemented by any kind of “conventional” matter (e.g. the stan-
dard model). It therefore denies every ambition towards a unified or unifying
theory.

For these reasons, critical questions confronting the model with the re-
quirements for a “true” theory of quantum gravity are more or less void. As
for its intrinsic consistency and mathematical control, the model meets rather
high standards, consolidating and improving previous attempts of canonical
quantization of gravity.

The model predicts that geometric observables such as areas and volumes
are quantized, with lowest eigenvalue spacings of the order of the Planck size.
This feature appears most promising in that quantum deviations from classical
geometry are derived as an output, with no classical (“background”) geometry
being used as an input.

On the other hand, one of the most serious flaws of LQG is the lack of
understanding of its relation to gravity “as we know it”, i.e. the construction
of semiclassical states in which Einstein’s general relativity at large scales is
(at least in some asymptotic sense) restored.

Another, presumably related drawback of LQG (like any other model
within the canonical approach to quantum gravity) is that in the physical
Hilbert space, once it has been constructed, the Hamiltonian vanishes. Thus,



82 K. Fredenhagen et al.

the question of the nature of “time” evolution of the quantum gravitational
states is presently poorly understood.

8.4 String Theory

A detailed discussion of successes and problems of string theory will be given
in the contribution by Louis, Mohaupt and Theisen to this book. We will here
restrain ourselves to some questions focussing on the intrinsic structure and
the conceptual foundations of string theory, which appear quite natural to
ask having in mind the benefits of axiomatic approaches in the case of QFT.
Even if some of our questions might appear immodest, the theory being still
under construction, they should be settled in some sense before string theory
can be considered as a mature theory.

String theory is a quantum theory naturally including gravitational degrees
of freedom in a unified manner along with “conventional” matter. Gravitons
and other particles arise as different “zero modes” of strings which are the fun-
damental objects; higher-vibrational modes would correspond to undetected
heavy particles (with masses far beyond accelerator energies). This fact is the
prominent source of enthusiasm with the theory. (For a critical comparison of
the achievements of string theory and of loop quantum gravity as candidates
for the quantum theory of gravitation, see e.g. [36].)

The theory can successfully reproduce scattering cross sections for gravi-
tons as they are expected in the lowest orders of perturbation theory with
the Einstein–Hilbert action. In contrast to perturbation theory (cf. Sect. 5),
the theory is believed to have a better UV behaviour due to the finite size
of the string, but its alleged finiteness (or renormalizability) could not be es-
tablished with the increasing understanding of higher-order contributions to
string theory.

On the phenomenological side, it was hoped that a unified theory including
the standard model of elementary particles would naturally emerge as an
effective theory at low (compared to the Planck scale) energies, but these
hopes were considerably reduced by an enormous number of possible “string
vacua”, destroying the predictive power of the theory.

String theory was originally formulated in a perturbative scheme, where
spacetime appears just as a classical background. The dynamics of the string
moving in this background is given by a two-dimensional conformal QFT
(organizing its internal degrees of freedom), whose consistency requires the
background to satisfy Einstein’s equations. In the course of time it became
clear that a consistent formulation of string theory has to take into account
non-perturbative structures like duality symmetries, including the need to
introduce higher-dimensional objects (“branes”). The presence of these clas-
sical objects is expected to be related to the question (although still far from
answering it) of the quantum nature of spacetime itself [37].

Non-perturbative formulations of string theory are in the focus of most
modern developments. Yet, the mathematical structure of non-perturbative
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string theory and the picture of spacetime and quantum gravity which emerges
are at the present time not yet well understood beyond a huge body of heuristic
imagination, based on the various duality symmetries of string theory and the
“holographic principle” concerning the quantum degrees of freedom of general
relativity. A most fascinating recent development is Maldacena’s conjecture
which states that non-perturbative string theory could be “equivalent” (in
a sense involving duality) to a QFT, possibly even in four dimensions. The
theory which started off to supersede QFT may in the end be equivalent to a
QFT!

As a computational scheme, string theory is highly constrained and deter-
mined by its internal consistency. For this reason, it is often claimed to be a
“unique” theory, hence it makes little sense to “axiomatize” string theory in a
similar way as quantum field Theory was axiomatized (Sect. 2). Nevertheless,
the justification of its computational rules deserves some critical scrutiny.

The central question is, which are the fundamental insights into the nature
of physical laws (principles) that are implemented by string theory? Is string
theory unique in doing so, or is it possibly only one consistent realization of
the same principles? Accepted principles such as quantum uncertainty, locality
and general relativity should be transcended by the new principles without
recourse to (classical) notions outside the theory.

An important “message” from algebraic QFT is that the intrinsic invari-
ant structure of the quantum observables are their algebraic relations such
as local commutativity, rather than their description in terms of fields. (Nei-
ther the classical action nor Feynman diagrams are intrinsic; field equations
and canonical commutation relations cannot even be maintained after quan-
tization.) The “concrete” (Hilbert space) representations of these “abstract”
algebraic relations determine the physical spectrum (masses, charges).

In this spirit, one would like to identify the intrinsic elements of string the-
ory, and the structural relations which hold a priori among them. An intrinsic
characterization would also turn claims such as the Maldacena conjecture into
predictions that can be verified (or falsified).

It is generally agreed that a classical background manifold should not ap-
pear in an ultimate formulation of string theory. This is not only because the
metric is expected to fluctuate, so that it is impossible to describe its expec-
tation values in a particular state by a classical geometry. Since spacetime
structures smaller than the string size cannot be probed, and hence cannot
have an operational meaning, string theory is expected to produce a radically
new concept of spacetime.

While string theory is an S-matrix theory, i.e. in a suitable limit it ad-
mits the computation of “on-shell” particle scattering amplitudes, “off-shell”
string field theory has been rigorously constructed only without interactions
[38]. The resulting theory may be viewed as a collection of infinitely many
“ordinary” quantum fields, but their local commutativity cannot be ensured
in a covariant way. The reason is that the constraints on the string degrees
of freedom prevent the construction of sharply or only compactly localized
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observables on the physical (positive-definite) Hilbert space out of string fields
defined on an indefinite space. In view of the previous remark, this conflict
with the classical spacetime concept should not come as a surprise. The re-
sult underlines that defining localization in terms of a classical labelling of
test functions is misleading. Instead, here is another instance where modular
theory (see Sect. 2 and [10, 11]) can deploy its power: using Poincaré covari-
ance, one can identify families of subalgebras which by their transformation
and commutation properties behave like algebras of local observables localized
in wedge regions. These algebraic properties should therefore be used as the
definition of localization.

With interactions, the description in terms of an infinite tower of quan-
tum fields is expected to survive, but the structure of the interactions (string
corrections to the effective action) goes beyond the framework of local La-
grangean QFT. Correspondingly, string field theory (even in a regime where
gravity can be neglected) is not expected to be a QFT in the sense of Sects. 2
or 5.

On the other hand, string theory exhibits a new fundamental symmetry
called “duality”. The Maldacena conjecture suggests that under a duality
transformation, string theory could turn into a QFT. A clarification of the
precise non-perturbative meaning of this conjecture is highly desirable, not
least in view of the numerous and far-reaching implications drawn from it.

As an example, T -duality, relating vibrational and winding modes of a
string, is a most characteristic symmetry of string theory. With the help of
T -duality one can understand how a string fails to be able to probe certain
singularities of a classical background [37]. Positing duality symmetry as an
abstract fundamental symmetry is a promising candidate for an intrinsic struc-
ture of the theory which can be formulated without recourse to the classical
picture of a string embedded into spacetime.

As for the intrinsic texture of string theory (assuming it to be a consistent
theory), it would be desirable to understand in which sense its subtheories
(“spacetime without matter”, “QFT without Planck scale gravity”) are sepa-
rately consistent, or rather only effective theories obtained by a singular limit,
which is regulated by the full theory.

While some of these questions might indeed rather reflect the authors’
personal rooting in QFT (and also some lack of understanding of string the-
ory), we think that they are urgent enough that expert string theorists should
provide answers in order to legitimate string theory as a candidate for the
Fundamental Unified Theory of all interactions.

9 Conclusions and Outlook

Whether the remaining gaps in the theory are merely of technical nature, or
rather signal a fundamental shortcoming of QFT, is not known at present,
and is by many researchers not considered as the most urgent question.
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Instead, the prime concern at present is the clash between gravity and
quantum theory, whose unification is considered as the (last) “missing link” in
our conception of fundamental physics. There are promising candidate theories
to achieve this ambitious goal, but none of them shares the same conceptual
clarity as has been attained for QFT, nor are there empirical data available
favouring or disfavouring either of them.

Unlike almost every historical precedent, the guiding principle at the fron-
tiers of research in fundamental physics is therefore mainly intrinsic consis-
tency, rather than empirical evidence. Every active researcher should be aware
of the delicacy of such a situation.

It should be remarked that, while various lines of research presently pur-
sued call basic notions such as geometry and symmetry into question, the
basic rules of quantum theory are never challenged. One may be tempted to
ascribe this fact to the solidity of our conceptual understanding of quantum
physics, developed over several decades not least in the form of QFT.

Note to the References

There is a long list of standard textbooks on quantum field theory. The sub-
sequent list of references leaves out most of them, as well as much of the
“classical” research articles. Instead, it includes a number of less well-known
articles, stressing some points which are relevant in our discussion but which
do not belong to the common knowledge about quantum field theory.
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1 Introduction

This introduction is meant to indicate some properties of general relativity
theory (GRT) which distinguish it from other branches of physics considered
in this book, to relate it to other branches of physics and to mention some
of its achievements and open problems. The subsequent chapters will give
details.

1.1 GRT is the only empirically supported theory in which the spacetime
structure is treated as dynamical, and not specified once and for all,
independently of physical processes. Since the spacetime metric is interre-
lated to matter and field variables via field equations, the distinction between
kinematics and dynamics is abolished in GRT.

Conceptually, the background independence must be seen as the principal
achievement of GRT; it is, however, at the same time the main obstacle to
overcome if GRT and quantum theory are to be united.

1.2 According to GRT the spacetime metric (and the connection and curva-
ture derived from it) represents both the “metric” in the original sense – time,
distance, causal order – and the gravitational inertial field; it unifies geometry,
chronometry, gravity and inertia. (Einstein: “gravitational field and metric are
manifestations of the same physical field”.)

1.3 GRT may be viewed as encompassing in a coherent system all of macro-
scopic, phenomenological physics, from laboratory scales to cosmology.

1.4 So far, all physical theories, classical or quantum, employ a metric to
represent matter or fields and their interactions. For this reason GRT is, in
principle, a basic ingredient of physics even if gravitation is quantitatively
negligible in many contexts. Since inertial mass is inseparable from active,
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gravity-producing mass, an ultimate understanding of mass can be expected
only from a theory comprising inertia and gravity.

1.5 Mathematically, GRT is fairly well understood. Several physically
interpreted exact solutions to its field equations, with and without matter,
are known, as well as general existence and uniqueness theorems [1]. For com-
plex realistic circumstances, perturbation schemes and numerical methods are
available. There is, at least in principle, no interpretation problem.

1.6 The existence of a Lorentz metric, the most basic assumption of GRT,
implies the approximate validity of special relativity theory (SRT) in spacetime
regions which are small compared to the time and distance scale set by the
curvature of spacetime. Even in neutron stars this scale is much larger than
the scales relevant for the properties of bulk matter, atoms or nuclei. There-
fore equations of state, cross sections, transport coefficients etc. derived from
quantum theory can be incorporated into the classical matter models used in
GRT in spite of the fact that these theories are in principle incompatible.

1.7 So far all experimental tests of GRT have supported the theory [2]. This
concerns laboratory experiments which test the existence of a Lorentz met-
ric or, equivalently, of local inertial frames; experiments with clocks, satel-
lites and electromagnetic signals around the Earth and in the solar system,
and the dynamics of binary pulsar systems including gravitational radiation
damping. GRT has also been used increasingly to analysze and interprete
astrophysical and cosmological phenomena. (Here one so far unexplained
observation, the “pioneer anomaly” [3], deserves to be mentioned, which has
been related tentatively to quintessence [4].)

1.8 At present, gravitational physics is one of the most active areas of research.
Great efforts are being made to directly detect gravitational waves, with the
prospect to open another window into the universe. Another goal is to find di-
rect evidence supporting the assumption that the large concentrations of mass
in the centers of galaxies are indeed black holes. High energy astrophysics of-
fers additional challenges such as the explanation of gamma ray bursts. At a
more conservative side, the investigation of gravitomagnetism, opened up by
gravity probe B, might be mentioned. This shows that classical GRT is not
a closed subject; compared to electrodynamics, gravitational physics has not
yet reached the stage of Hertz’s experiments.

1.9 The fundamental problem of unifying quantum theory and GRT
is considered in other contributions to this book. Here I want to remark only
that, in my view, “quantizing general relativity” is a rather inadequate way
to address the problem. A unification presumably requires basic changes of
quantum theory as well as of GRT, at least if the resulting theory is to remove
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infinites from both theories and to bring light to issues such as non-baryonic
dark matter and dark energy.

2 Basic Assumptions of GRT

2.1 In GRT as well as in Newtonian physics and SRT, spacetime, the
arena of directly perceivable phenomena, is represented as a connected real,
4-dimensional differentiable manifold M . This manifold is not generally iden-
tified with R4, however. M depends on the situation to be modelled; it can
only be determined in connection with a solution to the field equation (see
3.5). M by itself has no physical meaning; it gets meaning only through fields
defined on it.

The manifold M is assumed to carry a Lorentz metric gαβ. This as-
sumption guarantees that (i) SRT with its non-gravitational laws remains
approximately valid locally even if gravitational fields are taken into account
(2.2, 2.3); (ii) the connection Γαβγ (or covariant derivative operator ∇α) de-
termined by gαβ provides a natural way to express the influence of gravity on
“matter” (2.4 – 2.6); and (iii) the interaction between matter and gravity can
be expressed via the curvature associated with Γαβγ (2.7). Here “matter” is
used to denote all physical entities besides gαβ, i.e. everything which carries
localizable energy and momentum.

The beauty of GRT is due to the fact that one mathematical object, the
metric field gαβ and fields derived from it, provides all three aspects of gravity
listed above, without the need to introduce additional structures.

On the other hand, the division of physical entities into the metric and
“everything else” calls perhaps for a more democratic or, even better, a monis-
tic structure which, however, apparently is not in sight.

2.2 Given a point (“event”) x on a spacetime (M, gαβ), there exists a co-
ordinate system (xα) on a neighbourhood N of x such that xα = 0 at x and,
on N ,

gαβ(xε) = ηαβ + pαγβδ(xε)xγxδ (1)

where ηαβ = diag(1, 1, 1,−1), the functions p have the symmetries of the
curvature tensor Rαγβδ associated with gαβ, and pαγβδ(0) = − 1

3Rαγβδ(0). For
fixed x, such “normal” coordinates are unique up to Lorentz transformations.1

1 The statements about normal coordinates are equivalent to a coordinate-
independent fact: a neighbourhood of the zero vector of the tangent space at
x can be mapped diffeomorphically onto a neighbourhood of x in M such that
straight lines go into geodesics starting at x. In spite of their usefulness in GRT,
(1) and (2) are rarely mentioned; I found it only in Pauli’s relativity article in the
Encyclopedia of Mathematics and Mathematical Sciences. The theorem is true
for arbitrary dimensions and signatures; it holds if the metric is C2. A proof has
recently been given by B.G. Schmidt (unpublished) .
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These coordinates satisfy

(at x) : gαβ = ηαβ , gαβ,γ = 0, gαβ,γδ =
2
3
Rα(γδ)β (2)

Coordinates obeying the first line of (2) are called“locally inertial at x”;
normal coordinates form a subclass of them.2 The existence of normal coor-
dinates indicates that any Lorentz metric can be approximated by the flat
Minkowski metric ηαβ in a region small compared to the curvature scale,
max|Rαγβδ|−1/2, and (2) identifies the curvature tensor as a measure of an
“intrinsic” gravitational field, i.e. one that cannot be “transformed away” by
a coordinate change.

2.3 As a global restriction on physical spacetimes one assumes the manifold M
to be orientable and (M, gαβ) to be time-oriented. This last property means
that there exists a continuous, never-vanishing timelike vector field which is
said to point into the future. Timelike and lightlike vectors pointing into the
same half of the null cone as that specified vector are then also called future
pointing. These (rather weak) global restrictions are made to give meaning
to the discrete symmetry operations T (time reversal) and P (parity), and to
formulate local laws which presuppose a time-orientation such as the second
law of thermodynamics, molecular chaos, or the quantum law for transition
probabilities.

2.4 The existence of normal coordinates suggests the transfer of local physical
laws from special to general relativity: formulate the law in SRT as a tensor
equation with respect to inertial coordinates and substitute gαβ, ∇α for ηαβ ,
∂α, respectively, to obtain a tensorial GRT law. This law is seen to be identical
to the original law at the origin x of any normal coordinate system, hence it
will differ from its ancestor very little in a sufficiently small neighbourhood of
any event x.

This rule is unambiguous if the SRT-law is algebraic or of first differential
order. It provides a physical interpretation of the metric and the matter vari-
ables involved. The consistency of the laws so obtained is not implied by the
rule itself.3

Simple consequences of this hypothesis are Einstein’s generalized law of
inertia freely; falling test particles have timelike geodesic world lines given by

2 Given a timelike geodesic G, it is also possible to introduce local coordinates
in a neighbourhood of G such that G is the “spatial origin”, and such that the
first two equations of (2) are valid on G. Such coordinates are “locally inertial
on G” and represent Einstein’s elevator better that those defined in the text. It
is instructive to consider how “freely falling test masses” contained in a drag-
free satellite realize, as precisely as possible, geodesics enclosed in a local inertial
frame.

3 Examples where difficulties arise have been discovered by H.A. Buchdal, G. Velo
and D. Zwanziger. For discussion and refs. see, e.g., [5].



General Relativity 95

ẍα + Γαβγẋ
β ẋγ = 0 ; (3)

ideal clocks measure proper time
∫ |gαβdxαdxβ |1/2 along their (not necessarily

geodesic) world line; light rays in vacuo correspond to lightlike geodesics.
The rule also supplies GRT-laws for classical matter models including ki-

netic theory and hydro-, elasto-, thermo- and electrodynamics. These matter
models each contain an energy–momentum tensor Tαβ. The total energy–
momentum tensor obeys, in agreement with the correspondence rule SRT →
GRT , the law

Tαβ ;β = 0 (4)

which, because of the covariant derivative, is not a conservation law in the
ordinary sense. This comes as no surprise since the gravitational field acts on
matter. (See 3.8.)

The considerations of this section, which concern non-gravitational mat-
ter laws in gravitational fields, may be taken as an exact expression of (many
formulations of) Einstein’s heuristic “principle of equivalence”.

2.5 Energy is usually asumed to be positive and to dominate stresses.
Accordingly, Tαβ is said to be energy dominated if its components with re-
spect to any orthonormal basis satisfy

T 00 ≥ |Tαβ| (5)

for all α, β.
Hawking [6] has shown: if (4) and (5) hold, and if Tαβ = 0 on a compact

part S of a spacelike hypersurface, then Tαβ = 0 in the domain of dependence
of S. Thus, matter obeying (4) and (5) cannot move faster than light into an
empty region, since otherwise it could enter the domain of dependence of S
from the outside of S. This result is remarkable, since (4) represents 4 equa-
tions for 10 unknowns; without (5) the conclusion does not hold.

2.6 In GRT the concept “free particle” is abandoned since all matter seems to
be universally coupled to gravity. Accordingly the law of inertia is replaced in
GRT by the geodesic law (3) to represent free fall. No concept of mass enters
that law (or its predecessor, Galileo’s law), though for historical reasons it
is said to express the universal proportionality (or equality) of inertial and
gravitational mass.

It follows from (3) that the relative position vector rα of two infinitesimally
close (in the sense of a variation), freely falling particles obeys the equation
of geodesic deviation

r̈α = Rαβγδẋ
β ẋγrδ (6)

where the dot indicates covariant differentiation with respect to the proper
time of one of the geodesics ẋα(τ).
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This equation characterizes the curvature tensor. It shows that the ordi-
nary law of inertia, if expressed in terms of relative motions, holds, within the
framework of Lorentzian spacetimes, if and only if the spacetime is flat, and it
provides the interpretation of the curvature tensor as the gravitational tidal
field.

2.7 So far, the assumptions which have been introduced hold in any “metric”
theory of spacetime including SRT, since no field equation has been imposed
on gαβ .

To obtain a field equation relating gαβ to matter, Einstein assumed, in
analogy to Poisson’s law, an equation of the form

V αβ(g.., ∂g.., ∂2g..) = κTαβ

where the l.h.s. is a tensor-valued function depending on the arguments indi-
cated; it is assumed to be linear in the second derivatives gαβ,γδ.

Remarkably these assumptions determine V αβ , as follows. Equation (2)
shows: A function like V αβ can be expressed algebraically in terms of gαβ
and Rαβγδ (specialize to the origin of normal coordinates), linearly in Rαβγδ.
Therefore V αβ must be a linear combination of Rαβ , gαβ and Rgαβ with
constant coefficients. Hence, the looked-for field equation is equivalent to the
“tracefree equation”

Rαβ − 1/4gαβR = κ(Tαβ − 1/4gαβT ) (7a)

and a relation involving the traces R, T .
Equation (7a), the contracted Bianchi identity, and (4) imply that R+κT

is constant. Putting

R + κT = 4Λ (7b)

gives Einstein’s gravitational field equation

Rαβ − 1/2Rgαβ + Λgαβ = κTαβ (7)

Equation (7a) may be considered as that part of the gravitational field
equation which is independent of the “mechanical” or “matter” law (4), while
(7b) expresses the compatibility of (7a) with (4). In this argument Λ appears
as an integration constant.

In 1915, Einstein had assumed in addition that the Minkowski metric
should satisfy the vacuum field equation. Then Λ = 0. In 1917 he added
Λ to allow for a static model of the universe with pressureless matter.
For a discussion of the present views on Λ in physics and cosmology, see
Part VII.

By construction, the field equation (7) implies the energy–momentum law
(4). Thus (7) accounts both for the inertia of matter and for its power to
attract gravitationally. The constant κ = 8πGc−4 is chosen such that for
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weak fields and slowly moving and weakly stressed matter, Newton’s theory
emerges as an approximation [7] (c = speed of light, G = Newtons’s constant
of gravity).

Just as in Newtonian gravity the Poisson equation contains the trace of
the tidal field tensor, so in GRT (7) contains a “trace” Rαβ of the curvature
tensor.

3 General Comments on the Structure of GRT

3.1 The field equation (7) has physical meaning only if Tαβ is specified;
this specification always contains the metric. Mathematical studies often con-
sider the vacuum case, Tαβ = 0, with or without Λ. Matter models stud-
ied in some detail include perfect fluids, electromagnetic fields, collisionless
particle systems idealized by kinetic theory and, to a lesser extent, elastic
bodies. In these cases the system of partial differential equations consist-
ing of (7) and the relevant matter law admits a (locally) well-posed initial
value problem.

A model of a physical system in GRT thus consists of a structure
(M, gαβ ,m), where m stands for matter variables. Two such models are phys-
ically equivalent if their underlying manifolds can be smoothly and bijectively
mapped onto each other such that the fields gαβ,m of one model are mapped
into those of the other one. Ideally, a particular model should be characterized
by invariant properties. For example, Einsteins’s static universe is character-
ized as the only static solution of (7) with pressureless matter, with the density
ρ being the only independent invariant.

3.2 Contrary to appearance, the Einstein equation (7) does not imply matter
to be the source that determines the gravitational potential gαβ, for only (at
least) the pair (Tαβ, gαβ) describes matter, not Tαβ by itself. Equation (7)
states a mutual inter-action between metric and matter.

3.3 Equation (7) is incompatible with point particles as matter models. For
static, stellar models the mass/radius ratio has an upper bound c2/2G. The
simplest “objects” of GRT which may be taken to replace mass points are
black holes, see (4.5) below.

3.4 The tensors in (7) are symmetric. This follows from Einstein’s assuptions
stated in 2.6. The symmetry of the total energy–momentum tensor is, there-
fore, essentially a consequence of the assumption that gravity is completely
represented by gαβ and fields derived from it. The same holds for the special
kind of non-linearity (“self interaction”) of the l.h.s. of (7).

3.5 A solution of (7) is usually constructed in some local coordinate system.
Frequently the components gαβ in that system exhibit singularities. These
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may either be due to the choice of coordinates or to the existence of an intrin-
sic singularity. A solution can be considered as fully understood only if it has
been maximally extended. A maximal solution may be free of singularities;
otherwise its (suitably defined) boundary will be singular. The problems of
finding maximal extensions and/or characterizing singularities are difficult;
we know examples, but no general theorems.

3.6 The background independence, mentioned already in 1.1, is an
important characteristic of GRT. Its meaning is not properly grasped by
“general covariance”, i.e. the possibility to formulate the laws such that ar-
bitrary local coordinates may be used; that can be done for SRT as well
as for Newton’s theory. Rather, “absence of background” means that the
laws of GRT, in contrast to those of Newtonian physics and SRT, do not
presuppose the existence of an “absolute” spacetime structure which is spec-
ified categorically prior to dynamical laws and not influenced by physical
processes.

In GRT the metric is said to be “dynamical”. This involves two interrelated
aspects: (i) a gαβ-field is specifiable by independent initial data (“has degrees
of freedom”) which determine, together with matter data, its evolution (see
Sect. 4.3), (ii) the gαβ-field not only acts on matter as, e.g., via (4), but
interacts with matter, (7).

The history of physics shows that some essential changes in the foundation
of theories consisted in substituting dynamical structures for absolute ones.
It appears to be generally accepted that a fundamental theory should be
free of any background structure, i.e. its basic structures, not only those of
spacetime, should be dynamical, not absolute ones. One might call this the
“Mach–Einstein principle”.

Historically, the formulation of a theory directly identified its absolute
structures. Systematically and in general, it is difficult (if at all possible) to
identify these structural elements of a theory unambiguously, especially since
a theory may be based on different basic concepts. If, however, the variables
and laws to be taken as basic are specified, the distinction absolute/dynamical
is unambiguous, in my view.

The issue briefly considered here, and its relation to the principles of gen-
eral covariance, general relativity and diffeomorphism invariance, is discussed
carefully in the next chapter by D. Guilini. For a related discussion from a
different viewpoint, see [8], Sects. 2.2.5 and 2.3.

3.7 The assumptions introduced in Sect. 2 are not independent. That light
rays are given by lightlike geodesics, e.g., can be deduced from the generally
covariant Maxwell equations, the geodesic law can be deduced from (4), (5),
and a definition of “test particle”, and dynamical clock models can be shown
to exhibit proper time. It appears that GRT is semantically consistent, though
a complete axiomatic has not been given.
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3.8 As remarked in 2.3, (4) is not a conservation low; integration cannot
transform it into a statement saying that the amount of energy contained in
some finite volume changes only in accordance with a flux through the bound-
ary. This fact cannot be remedied by adding to the matter energy tensor a
gravitational energy tensor; according to GRT, such a tensor does not exist.
The reason is simple: The state of a gravitational field, i.e. its Cauchy data, is
given by some components of gαβ and its first partial derivatives. From these
data at a point one cannot construct a tensor as required.

It is possible to find non–tensorial energy–momentum “complexes” which,
added to Tαβ (or to its densitized version), obey ordinary divergence equa-
tions in consequence of (7), and which give rise to non-tensorial integral
conservation laws. Such complexes and laws are used in connection with ap-
proximation methods to express GRT-relations in familiar energy terms. It is
possible, however, to describe all observable relations of GRT without such
non-covariant tools.

In contrast to energy–momentum, scalar quantities like electric or bary-
onic charges do admit “decent” local and integral conservation laws since
scalars at different events can be added unambiguously while vectors cannot.

4 Theoretical Developments, Achievements
and Problems in GRT

4.1 Einstein’s gravitational field equation (7) is the Euler–Lagrange equation
associated with the action functional (with c ≡ 1)

AD[g,m] =
∫

D

{

1
2κ

(R(g)− 2Λ) + L(g,m)
}

dV (8)

in which D denotes a compact domain of spacetime, g stands for the
metric, m for matter variables and dV =

√|detgαβ |d4x is the invariant vol-
ume element of spacetime. Up to a divergence, the curvature scalar is the
only invariant function of the metric and its derivatives (of any order) whose
variational derivative is of second order in the metric. Up to a divergence,
R is a quadratic form in the connection coefficients. The action density L of
matter contains the metric and the connection, but not the curvature. The
energy tensor is obtained as the variational derivative of L,

1
2
Tαβ =

1
√|g|

∂(
√|g|L)
∂gαβ

(9)

Varying A with respect to g gives (7); varying it with respect to m gives
the matter equations. These statements summarize the mathematical contents
of Chap. 2 if the appropriate expressions for L are chosen.

For first-order Lagrangian field theories in SRT, the rule for general-
izing them to GRT stated in 2.3 is equivalent to the simple device of
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substituting g and ∇ for η and ∂ in the matter action density. This pre-
scription includes that no curvature term should be introduced into the
matter action; this minimal coupling rule may be considered as a version
of Einstein’s equivalence principle. In this form the principle can be ap-
plied not only to the classical matter models mentioned in 2.3, but also to
the formally classical, Lagrange-based standard model of particle physics.
That requires, however, that spacetime is considered as the base manifold
of a principal fibre bundle with structure group U(1) × SU(2) × SU(3); see
Part II.

The action (8) is also the starting point for Hamiltonian formulations of
gravity, either in terms of metric variables or connection variables (see 4.2).
These formulations make it possible to introduce canonical variables and to
try canonical quantization of gravity.

4.2 In the standard model of particle physics, principal connections play the
part of mediating interactions between massive particles. But although GRT
was the first theory in which a connection appeared, besides objects related to
linear representations of an underlying group, and the name “gauge” derives
from Weyl’s attempt to unify electromagnetism and gravitation, GRT is not
a pure gauge theory since the gravitational connection Γαβγ is not a basic field,
but is derived from the metric. This is related to the fact that, in contrast
to pure gauge theories, the points of the fibres of the SO(3,1) bundle over M
are orthonormal frames of (M, g); the bundle space is said to be soldered to
the base space. This special role of the spacetime connection shows up in the
gravitational Lagrangian density R = gαβRαβ , which is linear, not quadratic,
in the curvature like that of Maxwell and Yang–Mills fields. It appears that
this is another characteristic feature of gravity which distinguishes it from
the other fundamental interactions. In gravity, the gauge potential Γαβγ itself
derives from a potential, the metric.

A historical remark: the procedure

gαβ → Γαβγ → Rαβγδ (10)

consisting of two non-linear steps of first differential order leads from a tensor
via a connection to a tensor. The impossibility to form tensors from gαβ by
differentiation without the intervention of a non-tensorial field was one of the
obstacles Einstein had to overcome on his arduous way to his general theory of
relativity. Connections as quantities independent of a metric were introduced
only in 1918 by J.A. Schouten and H. Weyl after T. Levi-Civita’s introduction
of metric connections in 1917. While only the second step in (10) occurs in
gauge theories, the first step is peculiar to gravity; it was a step which enabled
Einstein to make the metric dynamical and to identify it with (a new kind of)
gravitational potential.

4.3 An essential test for the viability of a classical field theory is whether its
field equations admit a well-posed initial value problem. Solving the Cauchy
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problem requires identifying initial data and, thereby, states and degrees of
freedom, as well as to determine the dependence of the evolved field on its
data, i.e. the causal behaviour of the field.

Carrying out this analysis for Einsteins’s field equation (7), without or
with coupling to matter, turned out to be difficult for reasons which can all
be traced back to diffeomorphism invariance. Here I report only the main
results without technical details.

The equations split into two subsets. One of these imposes conditions,
usually in the form of non-linear elliptic partial differential equations, on the
initial data specified on a 3-dimensional Riemannian space (constraint equa-
tions). The free data for the gravitational field turn out to correspond to two
degrees of freedom per space point, as in the case of ordinary electromag-
netism. The second subset consists of the evolution equations. After imposi-
tion of coordinate conditions, these turn out to be hyperbolic, non-linear wave
equations. For all matter models mentioned in this survey,4 classical ones as
well as Dirac and Yang–Mills fields, the outermost characteristics turn out
to be lightlike hypersurfaxes, i.e. wave fronts propagating with fundamental
speed c. This expresses Einstein causality.

Hyperbolicity means the following: the laws imply relations between the
fields within finite domains of spacetime, relations which are not affected by
the fields outside that domain. The laws, and data on a compact part S of
space, uniquely determine the fields in the (finite) domain of dependence of
S. This kind of determinism is fundamentally different from that of Laplace
which requires data on the whole, infinite space at one instant.

A further important fact is that the first set is preserved under the evo-
lution. Thus, later states of the field again satisfy the so-called “constraint
equations”. Finally, irrespective of coordinate conditions, the evolved field is
determined by the data uniquely up to diffeomorphisms in the domain of
dependence of the data.

Spacetimes determined by initial data are said to be globally hyperbolic;
their manifolds M are products of a 3-manifold “space” and a 1-manifold
“time”. The initial value problem for the vacuum field equation with Λ = 0
has been used to prove the existence of global, singularity free, asymptoti-
cally flat spacetimes filled with gravitational radiation only. Such solutions
arise from initial data close to trivial data giving flat spacetime. They de-
scribe how incoming gravitational radiation scatters on itself and propagates
out again. Theorems about global solutions with Λ are also known.

4.4 An important task for any gravitation theory it the modelling of an iso-
lated system such as a single star, the solar system or a binary star system
far removed from other bodies. All quantitative tests of the field equation (7)

4 For models of bulk matter such as fluids, equations of state have to be restricted,
however, to exclude, e.g., superluminal sound waves. This holds in SRT already.
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are based on approximate solutions to such spacetimes. In this subsection we
put Λ = 0.

One expects the spacetime of an isolated system to resemble flat space-
time at large distance from the bodies. To express that asymptotic behaviour
R. Penrose proposed to rescale the metric gαβ → Ω2gαβ and to let Ω tend
to zero at large physical distances such that one can attach a “boundary
at infinity” where Ω = 0, Ω,α �= 0. The boundary consists of ideal end-
points of outgoing and incoming light rays, respectively, and of spacelike in-
finity. Such spacetimes may contain outgoing and/or incoming gravitational
and electromagnetic radiation. Some exact implications of the vacuum field
equation about the asymptotic behaviour of such radiation have been de-
rived, but the motion of bodies emitting radiation so far is the domain
of analytical, post-Newtonian approximations and, increasingly, numerical
relativity.

For asymptotically flat spacetimes a constant total 4-momentum at space-
like infinity has been defined, and a celebrated result says that it is future-
directed timelike; so it has positive energy (except, of course, for Minkowski
spacetime, where it is zero), provided Tαβ is energy dominated. A total 4-
momentum at null infinity whose (positive) energy decreases towards the fu-
ture according to the amount of the outgoing radiation has also been defined.

4.5 The vacuum field equation with Λ = 0 has asymptotically flat, particle like
solutions, black holes. Their stationary states are characterized by only three
parameters, namely mass, angular momentum and charge. The outer part of a
black hole spacetime, connected to infinity, is separated from an interior part
by a horizon which acts as a one-way membrane: test particles and radiation
can pass through from the outside only, not from the inside.

A thermodynamic of black holes has been elaborated [9]; its relation to
statistical mechanics, quantum and string theories is a subject of current
research.

In astrophysics, black holes are considered as objects which may form when
a massive star collapses at the end of its thermonuclear evolution. They are
also thought to exist at the centres of most galaxies. Efforts are being made
to observe spectroscopic features characteristic of the geometry near a horizon.

4.6 Light cones not only govern the propagation of electromagnetic and grav-
itational radiation, but they determine causal relations, too. While in flat
spacetime light cones are, apart from their vertices, smooth hypersurfaces, in
curved spacetimes they have self-intersections and caustics. Observationally
these geometric properties show up as the phenomena of gravitational lensing
[10]. Distant galaxies, e.g., are observed in different images which differ in
brightness and shape. Modelling such phenomena has become a useful tool in
astronomy for determining the masses and mass distributions of the deflecting
matter including dark matter. The successes of such modelling provide direct
evidence for spacetime curvature. They support the light deflection measure-
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ments which followed, with ever increasing accuracy, the famous solar eclipse
measurements of 1919.

4.7 Relativistic celestial mechanics which began with Einstein’s perihelion
paper of 1915 has been much developed since about 1980, in the form of post-
Newtonian dynamics whose approximate equations of motion now include
corrections of Newton’s laws of order up to (vc )

7, where v is a typical relative
speed, e.g., in a binary system.

This theory, or rather its first post-Newtonian version which includes only
(vc )

2 corrections, has been used to test whether GRT-predictions of relations
between observable parameters agree with real observations made on binary
systems composed of neutron stars. So far, agreement prevails, which is very
remarkable in view of the precision of the data. The predictions include the
slowing down rates of the orbital periods, and the agreement with measured
values has given indirect evidence for the existence of gravitational waves.

The higher-order approximations are applied tentatively to late stages of
compact binaries when the components approach each other ever closer until
they “plunge” together to form a single object, perhaps a black hole. Such
processes are thought to emit bursts of gravitational radiation which might be
detected by gravitational wave interferometers which have started to operate.
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1 Introduction

It is a widely shared opinion that the most outstanding and characteristic fea-
ture of general relativity is its manifest background independence. Accordingly,
those pursuing the canonical quantization programme for general relativity
see the fundamental virtue of their approach in precisely this preservation of
‘background independence’ (cf. Kiefer’s and Thiemann’s contributions). In-
deed, there is no disagreement as to the background dependence of competing
approaches, like the perturbative spacetime approach1 (see the contribution
by Lauscher and Reuter) or string theory (see the contribution by Louis,
Mohaupt, and Theisen, in particular their Sect. 10). Accordingly, many string
theorists would subscribe to the following research strategy:

Seek to make progress by identifying the background structure in our
theories and removing it, replacing it with relations which evolve sub-
ject to dynamical laws. ([18], p. 10).

But how can we reliably identify background structures?
There is another widely shared opinion according to which the principle

of general covariance is devoid of any physical content. This was first force-
fully argued for in 1917 by Erich Kretschmann [11] and almost immediately
accepted by Einstein [20] (Vol. 7, Doc. 38, p. 39), who from then on seemed
to have granted the principle of general covariance no more physical meaning
than that of a formal heuristic concept.

From this it appears that it would not be a good idea to define ‘back-
ground independence’ via ‘general covariance’, for this would not result in a

1 Usually referred to as the ‘covariant approach’, since perturbative expansions
are made around a maximally symmetric spacetime, like Minkowski or DeSitter
spacetime, and the theory is intended to manifestly keep covariance under this
symmetry group (i.e. the Poincaré or the DeSitter group), not the diffeomorphism
group!
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physically meaningful selection principle that could effectively guide future re-
search. What would be a better definition? ‘Diffeomorphism invariance’ is the
most often quoted candidate. What precisely is the difference between general
covariance and diffeomorphism invariance, and does the latter really improve
on the situation? These are the questions to be discussed here. For related and
partially complementary discussions, which also give more historical details,
we refer to [14, 15] and [4] respectively.

As a historical remark we recall that Einstein quite clearly distinguished
between the principle of general relativity (PGR) on one hand, and the prin-
ciple of general covariance (PGC) on the other. He proposed that the formal
PGC would imply (but not be equivalent to) the physical PGR. He therefore
adopted the PGC as a heuristic principle, guiding our search for physically
relevant equations. But how can this ever work if Kretschmann is right and
hence PGC devoid of any physical content? Well, what Kretschmann pre-
cisely said was that any physical law can be rewritten in an equivalent but
generally covariant form. Hence general covariance alone cannot rule out any
physical law. Einstein maintained that it did if one considers the aspect of
‘formal simplicity’. Only those expressions which are formally ‘simple’ after
having been written in a generally covariant form should be considered as can-
didates for physical laws. Einstein clearly felt the lack for any good definition
of formal ‘simplicity’, hence he recommended to experience it by comparing
general relativity to a generally covariant formulation of Newtonian gravity
(then not explicitly known to him), which was later given by Cartan [5, 6]
and Friedrichs [9] and which did not turn out to be outrageously complicated,
though perhaps somewhat unnatural. In any case, one undeniably feels that
this state of affairs is not optimal.

2 Attempts to Define General Covariance
and/or Background Independence

A serious attempt to clarify the situation was made by James Anderson [2, 3],
who introduced the notion of absolute structure which here we propose to take
synonymously with background independence. This attempt will be discussed
in some detail below. Before doing this we need to clarify some other notions.

2.1 Laws of Motion: Covariance versus Invariance

We represent spacetime by a tuple (M, g), where M is a four-dimensional
infinitely differentiable manifold and g a Lorentzian metric of signature
(+,−,−,−). The global topology of M is not restricted a priori, but for
definiteness we shall assume a product-topology R× S and think of the first
factor as time and the second as space (meaning that g restricted to the tan-
gent spaces of the submanifolds St := {t}×S is negative definite and positive
definite along Rp := R × {p}). Also, unless stated otherwise, the Lorentzian
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metric g is assumed to be at least twice continuously differentiable. We will
generally not need to assume (M, g) to be geodesically complete.

Being a C∞-manifold, M is endowed with a maximal atlas of coordi-
nate functions on open domains in M with C∞-transition functions on their
mutual overlaps. Transition functions relabel the points that constitute M ,
which for the time being we think of as recognizable entities, as mathemati-
cians do. (For physicists these points are mere ‘potential events’ and do not
have an obvious individuality beyond an actual, yet unknown, event that re-
alizes this potentiality.) Different from maps between coordinate charts are
global diffeomorphisms on M , which are C∞ maps f : M → M with C∞

inverses f−1 : M → M . Diffeomorphisms form a group (multiplication be-
ing composition) which we denote by Diff(M). Diffeomorphisms act (mostly,
but not always, naturally) on geometric objects representing physical entities,
like particles and fields.2 The transformed geometric object has then to be
considered a priori as a different object on the same manifold (which is not
meant to imply that they are necessarily physically distinguishable in a spe-
cific theoretical context). This is sometimes called the ‘active’ interpretation
of diffeomorphisms to which we will stick throughout.

Structures that obey equations of motion are, e.g., particles and fields.
Classically, a structureless particle (no spin etc.) is mathematically repre-
sented by a map into spacetime:

γ : R →M , (1)

such that the tangent vector-field γ̇ is everywhere timelike, i.e. g(γ̇, γ̇) > 0.
Other structures that are also represented by maps into spacetime are strings,
membranes, etc.

A field is defined by a map from spacetime, i.e.

Φ : M → V (2)

where V is some vector space (or, slightly more general, affine space, to include
connections). To keep the main argument simple we neglect more general
situations where fields are sections in non-trivial vector bundles or non-linear
target spaces.

Let γ collectively represent all structures given by maps into spacetime and
Φ collectively all structures represented by maps from spacetime. Equations
of motions usually take the general symbolic form

F [γ, Φ,Σ] = 0 (3)

which should be read as equation for γ, Φ given Σ.
2 For example, diffeomorphisms of M lift naturally to any bundle associated to

the bundle of linear frames and hence act naturally on spaces of sections in
those bundles. In particular, these include bundles of tensors of arbitrary ranks
and density weights. On the other hand, there is no natural lift to, e.g., spinor
bundles, which are associated to the bundle of orthonormal frames (which are
only naturally acted upon by isometries, but not by arbitrary diffeomorphisms).
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Σ represents some non-dynamical structures on M . Only if the value of
Σ is prescribed do we have definite equations of motions for (γ, Φ). This
is usually how equations of motions are presented in physics: solve (3) for
(γ, Φ), given Σ. Here only (γ, Φ) represent physical ‘degrees of freedom’ of the
theory to which alone observables refer (or out of which observables are to be
constructed). By ‘theory’ we shall always understand, amongst other things,
a definite specification of degrees of freedom and observables.

The group Diff(M) acts on the objects (γ, Φ) (here we restrict the fields to
tensor fields for simplicity) as follows:

(f, γ) → f · γ := f ◦ γ for particles etc. , (4a)

(f, Φ) → f · Φ := D(f∗) ◦ Φ ◦ f−1 for fields etc. , (4b)

where D is the representation of GL(4,R) carried by the fields. In addition,
we require that the non-dynamical quantities Σ to be geometric objects, i.e.
to support an action of the diffeomorphism group.

Definition 1. Equation (3) is said to be covariant under the subgroup G ⊆
Diff(M) iff3 for all f ∈ G

F [γ, Φ,Σ] = 0 ⇔ F [f · γ , f · Φ , f ·Σ] = 0 . (5)

Definition 2. Equation (3) is said to be invariant under the subgroup G ⊆
Diff(M) iff for all f ∈ G

F [γ, Φ,Σ] = 0 ⇔ F [f · γ , f · Φ , Σ] = 0 . (6)

Note the difference: in Definition 2 the non-dynamical structures Σ are the
same on both sides of the equation, whereas in Definition 1 they are allowed to
be also transformed by f ∈ Diff(M). Covariance merely requires the equation
to ‘live on the manifold’, i.e. to be well defined in a differential-geometric
sense, whereas an invariance is required to transform solutions to the equations
of motions to solutions of the very same equation,4 which is a much more
restrictive condition.

As a simple example, consider the vacuum Maxwell equations on a fixed
spacetime (Lorentzian manifold (M, g)):

dF = 0 , (7a)
d � F = 0 , (7b)

3 I use ‘iff’ as an abbreviation for ‘if and only if’.
4 In the mathematical literature this is called a symmetry (of the equation). We

wish to avoid the term ‘symmetry’ here altogether because that – in our termi-
nology – is reserved for a further distinction of invariances into symmetries, which
change the physical state, and redundancies (gauge transformations) which do not
change the physical state. Here we will not need this otherwise very important
distinction.
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where F denotes the 2-form of the electromagnetic field and d the exterior
differential. The � denotes the (linear) ‘Hodge duality’ map, which in compo-
nents reads

� Fμν = 1
2εμναβF

αβ , (8)

and which depends on the background metric g through ε and the operation
of raising indices: Fαβ := gαμgβν Fμν .5 The system (7) is clearly Diff(M)-
covariant since it is written purely in terms of geometric structures on M
and makes perfect sense as equation on M . In particular, given any diffeo-
morphisms f of M , we have that f · F satisfies (7a) iff F does. But it is not
likewise true that d � F = 0 implies d � f · F = 0. In fact, it may be shown6

that this is true iff f is a conformal isometry of the background metric g, i.e.
f · g = λ g for some positive real-valued function λ on M . Hence the system
(7) is not Diff(M)-invariant but only G-invariant, where G is the conformal
group of (M, g).

2.2 Triviality Pursuit

Covariance Trivialized (Kretschmann’s Point)

Consider the ordinary ‘non-relativistic’ diffusion equation for the R-valued
field φ (giving the concentration density):

∂tφ = κΔφ . (9)

This does not look Lorentz covariant, let alone covariant under diffeomor-
phisms. This changes if it is rewritten in the following form

{nμ∇μ − κ(nμnν − gμν)∇μ∇ν}φ = 0 . (10)

Here gμν are the contravariant components of the spacetime metric (recall that
we use the ‘mostly minus’ convention for its signature), ∇μ is the associated
Levi-Civita covariant derivative, and nμ is a normalized covariant-constant
timelike vector field which gives the preferred flow of time encoded in (9) (i.e.
on scalar fields ∂t = nμ∇μ). Equation (10) has the form (3) with no γ, Φ = φ,
and Σ = (gμν , nμ) and is certainly diffeomorphism covariant in the sense of
Definition 1. The largest invariance group – in the sense of Definition 2 – is
given by that subgroup of Diff(M) whose elements stabilize the non-dynamical
structures Σ. We write

StabDiff(M)(Σ) = {f ∈ Diff(M) | f ·Σ = Σ} (11)

5 Note that in 3+1 dimensions this means that the � operation only depends on
the conformal equivalence class of g, since gαβgγδ

√| det{gμν}| is invariant under
gμν �→ Ω2 gμν . Accordingly, in this case, it is only the conformal equivalence class
of g and not g itself that should be identified with Σ.

6 This is true in 1+3 dimensions. In other dimensions higher than two, f must even
be an isometry of g.
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In our case, StabDiff(M)(g) is the 10-parameter Poincaré group. In addition, f
stabilizes nμ if it is in the 7-parameter subgroup R×E(3) of time translations
and spatial Euclidean motions.

This example already shows (there will be more below) how to proceed in
order to make any theory covariant under Diff(M). As already noted, Diff(M)-
covariance merely requires the equation to be well defined in the sense of
differential geometry, i.e. it should live on the manifold. It seems clear that
any equation that has been written down in a special coordinate system on
M (like (9)) can also be written in a Diff(M)-covariant way by introducing
the coordinate system – or parts of it – as background geometric structure.
This is, in more modern terms, the formal core of the critique put forward by
Erich Kretschmann in 1917 [11].

Invariance Trivialized

Given that an equation of the form (3) is already G-covariant, we can equiv-
alently express the condition of being G-invariant by

F [γ, Φ,Σ] = 0 ⇔ F [γ, Φ , f ·Σ] = 0 , ∀f ∈ G , (12)

i.e. any solution of the equation parameterized by Σ is also a solution of the
different equation parameterized by f ·Σ. Evidently, the more non-dynamical
structures there are, the more difficult it is to satisfy (12). In generic situations
it will only be satisfied if G = StabDiff(M)(Σ). Hence, in distinction to the
covariance group, increasing the amount of structures of the type Σ cannot
enlarge the invariance group. The case of the largest possible invariance group
deserves a special name:

Definition 3. Equation (3) is called diffeomorphism invariant iff it allows
Diff(M) as invariance group.

In view of (12), the requirement of Diff(M)-invariance can be understood as a
strong limit on the amount of non-dynamical structure Σ. Generically it seems
to eliminate any Σ, i.e. the theory should contain no non-dynamical back-
ground fields whatsoever. Intuitively this is what background independence
stands for. Conversely, any Diff(M)-covariant theory without non-dynamical
fields is trivially Diff(M)-invariant. Hence it seems sensible to simply identify
‘Diff(M)-invariance’ and ‘background independence’, and this is what most
working physicists seem to do.

But this turns out to be too simple. The origin of the difficulty lies in our
distinction between dynamical and non-dynamical structures, which turns out
not to be sufficiently sharp. Basically we just said that a structure (γ or Φ)
was dynamical if it had no a priori prescribed values, but rather obeyed some
equations of motion. We did not say what qualifies an equation as an ‘equation
of motion’. Can it just be any equation? If yes then we immediately object
that there exists an obvious strategy to trivialize the requirement of Diff(M)-
invariance: just let the values of Σ be determined by equations rather than
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by hand; in this way they formally become ‘dynamical’ variables and no non-
dynamical quantities are left. Formally this corresponds to the replacement
scheme

Φ �→ Φ′ = (Φ,Σ) , (13a)
Σ �→ Σ′ = ∅ , (13b)

so that invariance now becomes as trivial as the requirement of covariance.
More concretely, reconsider the examples (7) and (10) above. In the first

case we now regard the spacetime metric g as ‘dynamical’ field for which we
add the condition of flatness as ‘equation of motion’:

Riem[g] = 0 , (14)

where Riem denotes the Riemann tensor of (M, g). In the second case we
regard g as well as the timelike vector field n as ‘dynamical’ and add (14) and
the two equations

g(n, n) = c2 , (15a)
∇n = 0 . (15b)

In this fashion we arrive at diffeomorphism invariant equations. But do they
really represent the same theory as the one we originally started from? For
example, are their solution spaces ‘the same’? Naively the answer is clearly
‘no’, simply because the reformulated theory has – by construction – a much
larger space of solutions. For any solution Φ of the original equations F [Φ,Σ] =
0, where Σ is fixed, we now have the whole Diff(M)-orbit of solutions, {(f ·Φ, f ·
Σ) | f ∈ Diff(M)} of the new equations, which treat Σ as dynamical variable.
A bijective correspondence can only be established if the transformations f
that act non-trivially on Σ (i.e. f �∈ StabDiff(M)(Σ)) are declared to be gauge
transformations, so that any two field configurations related by such an f are
considered to be physically identical.

If this is done, the simple strategy outlined here suffices to (formally)
trivialize the requirement of diffeomorphism invariance. Hence defining back-
ground independence as being simple diffeomorphism invariance would also
render it a trivial requirement. How could we improve its definition so as to
make it a useful notion? This is precisely what Anderson attempted in [3]. He
noted the following peculiarities of the reformulation just given:

1. The new fields g or (g, n) obey an autonomous set of equations which does
not involve the proper dynamical fields F or φ respectively. In contrast,
the equations for the latter do involve g or (g, n). Physically speaking, the
system whose states are parameterized by the new variables acts upon the
system whose states are parameterized by F or φ, but not vice versa. An
agent which dynamically acts but is not acted upon may well be called
‘absolute’ – in generalization of Newton’s absolute space. Such an absolute
agent should be eliminated.
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2. The sector of solution space parameterized by g or (g, n) consists of a single
diffeomorphism orbit. For example, this means that for any two solutions
(φ, g, n) and (φ′, g′, n′) of (10), (14), and (15) there exists a diffeomorphism
f such that (g′, n′) = (f · g , f ·n). So ‘up to diffeomorphisms’ there exists
only one solution in the (g, n) sector. This is far from true for φ: the
two solutions φ and φ′ are generally not related by a diffeomorphism.
This difference just highlights the fact that the added variables really did
not correspond to new degrees of freedom (they were never supposed to)
because the added equations were chosen strong enough to maximally fix
their values (up to diffeomorphisms).

A closer analysis shows that the first criterion is really too much dependent
on the presentation to be generally useful as a necessary condition. Abso-
lute structures will not always reveal their nature by obeying autonomous
equations. The second criterion is more promising and actually entered the
literature with some refinements as criterion for absolute structures. Before
going into this, we will discuss some attempts to disable the trivialization
strategies just outlined.

2.3 Strategies Against Triviality

Involving the Principle of Equivalence

As diffeomorphism covariance is a rather trivial requirement to satisfy, we
will from now on only be concerned with diffeomorphism invariance. As we
explained, it could be achieved by letting the Σ’s ‘change sides’, i.e. become
dynamical structures (γ’s and Φ’s), as schematically written down in (13). We
seek sensible criteria that will limit the number of such renegades. A physical
criterion that suggests itself is to allow only those Σ to change sides which are
known to correspond to dynamical variables in a wider context. For example,
we may allow the spacetime metric g to become formally dynamical, since we
know that it describes the gravitational field, even if in the context at hand
the self-dynamics of the gravitational field is not relevant and therefore, as
a matter of approximation, fixed to some value (e.g. the Minkowski metric).
Doing this would render the Maxwell equations (7) (plus the equations for
g) diffeomorphism invariant. But this alone would not work for the diffusion
equation, where n would still act as a non-dynamical structure.

Hence we see that the requirement to achieve diffeomorphism invariance
by at most adjoining g to the dynamical variables is rather non-trivial and
connects to Einstein’s principle of equivalence. Let us quote Wolfgang Pauli
in this context:

Einen physikalischen Inhalt bekommt die allgemeine kovariante For-
mulierung der Naturgesetze erst durch das Äquivalenzprinzip, welches
zur Folge hat, daß die Gravitation durch die gik allein beschrieben
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wird, und daß diese nicht unabhängig von der Materie gegeben, son-
dern selbst durch die Feldgleichungen bestimmt sind. Erst deshalb
können die gik als physikalische Zustandsgrößen bezeichnet werden.7

([17], p. 181; the emphases are Pauli’s)

Absolute Structures

As already remarked, another strategy to render the requirement of diffeomor-
phism invariance non-trivial was suggested by Anderson [3] by means of his
notion of ‘absolute structures’. However, most commentators share the opin-
ion that Anderson did not succeed to give a proper definition of this term.
Even worse, some feel that so far nobody has, in fact, succeeded in giving a
fully satisfying definition.

To see what is behind this somewhat unhappy state of affairs, let us start
with a tentative definition that suggests itself from the discussion given above:

Definition 4 (tentative). Any field which is either not dynamical, or whose
solution space consists of a single Diff(M)-orbit, is called an absolute
structure.

In general terms, let S denote the space of solutions to a given theory. If
the theory is Diff(M)-invariant S carries an action of Diff(M). The fields can
be thought of as parameterising on S. An absolute structure is a parameter
which takes the same range of values in each Diff(M) orbit and therefore
cannot separate any two of them. If we regard Diff(M) as a gauge group,
i.e. that Diff(M)-related configurations are physically indistinguishable, then
absolute structures carry no observable content.

Following our general strategy we could now attempt to give a definition
of ‘background independence’:

Definition 5 (tentative). A theory is called background independent iff
its equations are Diff(M)-invariant in the sense of Definition 3 and its fields
do not include absolute structures in the sense of Definition 4.

Before discussing these proposal, let us look at some more examples.

2.4 More Examples

Scalar Gravity a la Einstein–Fokker

In 1913, just before the advent of general relativity, Gunnar Nordsröm in-
vented a formally consistent Poincaré-invariant scalar theory of gravity; see,
7 ‘The generally covariant formulation of the physical laws acquires a physical con-

tent only through the principle of equivalence, in consequence of which gravitation
is described solely by the gik and these latter are not given independently from
matter, but are themselves determined by field equations. Only for this reason
can the gik be described as physical quantities’ ([16], p. 150).
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e.g., the survey by von Laue [22]. Shortly after its publication it was pointed
out by Einstein and Fokker that Nordström’s (second) theory can be presented
in a ‘covariant’ way. Explicitly they said,

Im folgenden soll dargetan werden, daß man zu einer in formaler
Hinsicht vollkommen geschlossenen und befriedigenden Darstellung
der Theorie [Nordströms] gelangen kann, wenn man, wie dies bei
der Einstein-Grossmannschen Theorie bereits geschehen ist, das
invarianten-theoretische Hilfsmittel benutzt, welches uns in dem ab-
soluten Differentialkalkül gegeben ist.8 ([20], Vol. 4, Doc. 28, p. 321)

The essential observation is this: consider conformally flat metrics:

gμν = φ2 ημν , (16)

then the field equation is equivalent to

R[g] = 24πGgμνTμν , (17a)

where R[g] is the Ricci scalar for the metric g, whereas the equation of motion
for the particle becomes the geodesic equation with respect to g:

ẍμ + Γμαβ ẋ
αẋβ = 0 . (17b)

Now, the system (17), considered as equations for the metric g and the tra-
jectory x, is clearly Diff(M)-invariant. But Nordström’s theory is equivalent
to (17) plus (16). Here η is a non-dynamical field so that (16, 17) is only
Diff(M)-covariant. According to the general scheme outlined above this could
be remedied by letting the metric η be a new dynamical variable whose equa-
tion of motion just asserts its flatness:

Riem[η] = 0 . (18)

But then η qualifies as an absolute structure according to Definition 4 and the
theory (16, 17, 18) is not background independent. The subgroup G ⊂ Diff(M)
that stabilizes η is – by definition – the inhomogeneous Lorentz group, which
had already been the invariance group of Nordström’s theory. So no additional
invariance has, in fact, been gained in the transition from Nordström’s to the
Einstein–Fokker formulation.

Sometimes the absolute structures are not so easy to find because the
theory is formulated in such a way that they are not yet isolated as separate
field. For example, in the case at hand, (16) and (18) together are clearly
equivalent to the single condition that g be conformally flat, which in turn

8 ‘In the following we wish to show that one can arrive at a formally complete
and satisfying presentation of the theory [Nordström’s] if one uses the methods
from the theory of invariants given by the absolute differential calculus, as it was
already done in the Einstein–Grossman theory.’
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is equivalent to the vanishing of the conformal curvature tensor for g (Weyl
tensor):

Weyl[g] = 0 . (19)

The field ημν has now disappeared from the description and the theory does
not explicitly display any absolute structure anymore. But, of course, it is
still there; it is now part of the field g. To bring it back to light, make a field
redefinition gμν �→ (φ, hμν) which isolates the part determined by (19); for
example,

φ := [− det{gμν}]
1
8 , (20)

hμν := gμν [− det{gμν}]−
1
4 . (21)

Then any two solutions for the full set of equations are such that their com-
ponent fields hμν and h′

μν are related by a diffeomorphism. Hence hμν is an
absolute structure.

Clearly there is a rather non-trivial mathematical theory behind the last
statement of diffeomorphism equivalence of hμν . We could not have made that
statement had we not already been in possession of the full solution theory
for (19) which, after all, is a complicated set of non-linear partial differential
equations of second order.

A Massless Scalar Field from an Action Principle

Usually we require the equations of motion to be the Euler–Lagrange equa-
tions for some associated action principle. Would the somewhat bold strategy
to render non-dynamical structures dynamical by adding by hand ‘equations
of motion’ which fix them to their previous values also work if these added
equations were required to be the Euler–Lagrange equations for some common
action principle? The answer is by no means obvious, as the following simple
example taken from [19] illustrates:

Consider a real massless9 scalar field in Minkowski space:

�φ := ημν∇μ∇νφ = 0 . (22)

According to standard strategy the non-dynamical Minkowski metric η is
eliminated by introducing the dynamical variable g, replacing η in (22) by g,
and adding the flatness condition

Riem[g] = 0 (23)

as new equation of motion. Is there an action principle whose Euler–Lagrange
equations are (equivalent to) these equations? This seems impossible without

9 This is just assumed for simplicity. The arguments work the same way if a mass
term were included.
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introducing yet another field λ (a Lagrange multiplier) whose variation just
yields (23). The action would then be

S = 1
2

∫

dV gμν∇μφ∇νφ + 1
4

∫

dV λαβμνRαβμν , (24)

where the symmetries of the tensor field λ are that of the Riemann tensor:

λαβμν = λ[αβ][μν] = λμναβ . (25)

Variation with respect to φ and λ yield (22) and (23) respectively, and varia-
tion with respect to g gives

∇μ∇νλαμβν = Tαβ , (26)

where Tαβ is the energy–momentum tensor for φ. These equations do not
give a background independent theory for the fields (φ, g, λ) since g is an
absolute structure. The solution manifold of the φ field is, in fact, the same as
before. For this it is important to note that there is an integrability condition
resulting from (23,26), namely ∇αTαβ = 0, which is however already implied
by (22). Hence no extra constraints on φ result from (26).

However, the λ field seems to actually add more dimensions to the solution
manifold and hence to the observable content of the theory. Indeed, using the
Poincaré Lemma in flat space one shows that any divergenceless symmetric
2-tensor T μν can always be written as in (26), where λ has the symmetries
(25). But this does not fix λμανβ , so that the set of Diff(M)-equivalence classes
of stationary points of (24) is strictly ‘larger’ than the set of solutions of (22).
In other words, the (Diff(M) reduced) phase space for the theory described by
(24) is ‘larger’ then that for (22).10 A a result we conclude that the reformula-
tion given here does not achieve an equivalent Diff(M)-invariant reformulation
of (22) in terms of an action principle.

2.5 Problems with Absolute Structures

A first thing to realize from the examples above is that the notion of absolute
structure should be slightly refined. More precisely, it should be made local
in order to capture the idea that an absolute element in the theory does not
represent local degrees of freedom. Rather than saying that a field corresponds
to an absolute structure if its solution space consists of a single Diff(M)-orbit,
we would like to make the latter condition local:

Definition 6. Two fields T1 and T2 are said to be locally diffeomorphism
equivalent iff for any point p ∈M there exits a neighbourhood U of p and a
diffeomorphism φU : U → U such that φU · (T1

∣

∣

U
) = T2

∣

∣

U
.

10 I am not aware of a reference where a Hamiltonian reduction of (24) is carried
out.



General Covariance and Background Independence 117

Note that local diffeomorphism equivalence defines an equivalence relation on
the set of fields. Accordingly, following a suggestion of Friedman [7], we should
replace the tentative Definition 4 by the following:

Definition 7. Any field which is either not dynamical or whose solutions are
all locally diffeomorphism equivalent is called an absolute structure.

In fact, this is what we implicitly used in the discussions above where we
slightly oversimplified matters. For example, any two flat metrics g1, g2 (i.e.
which satisfy Riem[g1,2] = 0) are generally only locally diffeomorphism equiv-
alent. Likewise, a conformally flat metric g (i.e. which satisfy Weyl[g]=0) is
locally diffeomorphism equivalent to f2η, where f is non-vanishing function
and η is a fixed flat metric.

Having corrected this we should also adapt the tentative Definition 5:

Definition 8. A theory is called background independent iff its equations
are Diff(M)-invariant in the sense of Definition 3 and its fields do not include
absolute structures in the sense of Definition 7.

So far so good. Is this, then, the final answer? Unfortunately not! The stan-
dard argument against this notion of absolute structure is that it may render
structures absolute that one would normally call dynamical. The canonical ex-
ample, usually attributed to Robert Geroch [10], makes use of the well-known
fact in differential geometry that nowhere vanishing vector fields are always
locally diffeomorphism equivalent (see, e.g., Theorem 2.1.9 in [1]). Hence any
diffeomorphism-invariant theory containing vector fields among their funda-
mental field variables cannot be background independent. For example, con-
sider the coupled Einstein–Euler equations for a perfect fluid of density ρ
and four-velocity u in spacetime with metric g. This system of equations is
Diff(M)-invariant. By definition of a velocity field we have g(u, u) = c2. This
means that u cannot have zeros, even if for physical reasons we would usually
assume the fluid to be present not everywhere in spacetime, i.e. the support
of ρ is a proper subset of spacetime.11 Then the four velocity of the fluid is
an absolute structure, contrary to our physical intention.

I know of two suggestions how to avoid this conclusion in the present
example. One is to use the 1-form uμ dxμ rather than the vector field uμ∂μ
as fundamental dynamical variable for the fluid. The point being that one-
form fields are not locally diffeomorphism equivalent. For example, a closed
(exact) one-form field will always be mapped into a closed (exact) one-form
field, and hence cannot be locally diffeomorphism equivalent to a non-closed
field. Another suggestion, in fact the only one that I have seen in the liter-
ature ([8] p. 59 footnote 9 and [21], p. 99, footnote 8) is to take the energy–
momentum density Π rather than u as fundamental variable. To be sure, on
11 It seems a little strange to be forced to consider velocity fields u in regions where
ρ = 0, i.e. where there is no fluid matter. Velocity of what? one might ask. In a
concrete application this means that we have to extend u beyond the support of
ρ and that the physical prediction is independent of that extension.
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the support of Π we can think of it as equal to ρu, but on the complement of
its support there is no need to define a u. This avoids the unwanted conclusion
whenever Π indeed has zeros; otherwise the argument given above for u just
applies to Π .

An even simpler argument, which I have not seen in the physics literature,
even applies to pure gravity. It rests on the following theorem from differ-
ential geometry, an elegant proof of which was given by Moser [12]: given
two compact-oriented n-dimensional manifolds V1 and V2 with n-forms μ1

and μ2 respectively. There exists an orientation-preserving diffeomorphism
φ : V1 → V2 such that φ∗μ2 = μ1 iff the μ1-volume of V1 equals the μ2-volume
of V2, i.e. iff

∫

V1

μ1 =
∫

V2

μ2 . (27)

If we take V1 = V2 to be the closure of an open neighbourhood U in the
spacetime manifold M , this theorem implies that the metric volume forms,
written in coordinates as

μ =
√

∣

∣det[g(∂μ, ∂ν)]
∣

∣ dx1 ∧ · · · ∧ dxn , (28)

are locally diffeomorphism equivalent iff they assign the same volume to U .
Hence it follows that the metric volume elements modulo constant factors are
absolute elements in pure gravity. Note that this implies that for any metric
g any point p ∈M there is always a local coordinate system {xμ} in an open
neighbourhood U of p such that

√| det[g(∂μ, ∂ν)]| = 1.

3 Conclusion

Background independence is one of the central strategic issues in discussions
on competing approaches to quantum gravity. This clearly emerges from the
contributions of Kiefer, Thiemann, Nicolai and Peeters, Lauscher and Reuter,
and Louis, Mohaupt, and Theisen to this book. Given the impressive amount
of effort that is devoted to analyse the consequences of these different ap-
proaches, it seems a little strange to me that the very notion of background
independence is tolerated to be in the state of relative elusiveness in which
it appears to be. Clearly, in specific situations it is usually not difficult to
associate a mathematically well-defined meaning to an ‘intuitively obvious’
interpretation of such a requirement of background independence. But when
used as general strategic criterion one should, I think, come up with a gener-
ally valid and mathematically well-defined definition. I am not aware of such
a definition. Attempts were made in the past, but they run into the problems
outlined here. Hence the problem must be regarded as an outstanding one.
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Why Quantum Gravity?
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Quantum theory seems to be a universal framework for physical theories.
In fact, most of the interactions found in Nature are already successfully
accommodated into this framework. The only interaction for which this has
not yet been achieved is gravity. All manifestations of the gravitational field
known so far can be understood from a classical theory—Einstein’s theory
of general relativity (GR), also called geometrodynamics. It is defined by the
Einstein–Hilbert action

SEH =
c4

16πG

∫

M
d4x

√−g (R− 2Λ) + boundary term + Sm , (1)

where R and Λ are the Ricci scalar and the cosmological constant, respectively,
and where Sm denotes the action for non-gravitational fields from which one
can derive the energy–momentum tensor according to

Tμν(x) =
2√−g

δSm

δgμν(x)
. (2)

There exist certain ‘uniqueness theorems’ which state that every reason-
able theory of the gravitational field must contain GR (or its natural gen-
eralization, the Einstein–Cartan theory) in a certain limit. Details for this
and the material discussed below can be found in [1–3] and the references
therein.

In spite of the success of GR, there are many reasons to believe that the
most fundamental theory of gravity is a quantum theory. Unfortunately, no
experimental material is presently available, which would point in a definite
direction. The reasons are therefore of a theoretical nature. The main moti-
vations for quantum gravity are as follows:

• Unification. The history of science shows that a reductionist viewpoint
has been very fruitful in physics. The standard model of particle physics
is a quantum field theory which has partially united all non-gravitational
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interactions through the gauge group SU(3) × SU(2) × U(1), cf. the con-
tribution by H.-G. Dosch to this book. The universal coupling of gravity
to all forms of energy would make it plausible that gravity has to be im-
plemented in a quantum framework, too. Moreover, attempts to construct
an exact semiclassical theory, where gravity stays classical but all other
fields are quantum, have failed up to now. This demonstrates in particular
that classical and quantum concepts (phase space versus Hilbert space,
etc.) are most likely incompatible.

• Cosmology and black holes. As the singularity theorems and the en-
suing breakdown of GR demonstrate, a fundamental understanding of the
early universe—in particular its initial conditions near the ‘big bang’—
and of the final stages of black-hole evolution requires an encompass-
ing theory. From the historical analogue of quantum mechanics (which
due to the existence of stationary states has rescued the atoms from
collapse) the general expectation is that this encompassing theory is a
quantum theory. It must be emphasized that if gravity is quantized,
the kinematical non-separability of quantum theory demands that the
whole Universe must be described in quantum terms. This leads neces-
sarily to the concepts of quantum cosmology and the wave function of the
universe.

• Problem of time. Quantum theory and GR (in fact, any generally
covariant theory) contain drastically different concepts of time (and
spacetime). Strictly speaking, they are incompatible. In quantum the-
ory, time is an external (absolute) element, not described by an operator
(in special relativistic quantum field theory, the role of absolute time is
played by the external Minkowski spacetime). In contrast, spacetime is
a dynamical object in GR. It is clear that a unification with quantum
theory must lead to modifications of the concept of time. Related prob-
lems concern the role of background structures in quantum gravity, the
role of the diffeomorphism group (Poincaré invariance, as used in ordinary
quantum field theory, is no longer a symmetry group), and the notion of
‘observables’.

• Avoidance of divergences. It has long been speculated that quantum
gravity may lead to a theory devoid of the ubiquitous divergences aris-
ing in quantum field theory. This may happen, for example, through the
emergence of a natural cutoff at small distances (large momenta). In fact,
modern approaches such as string theory or loop quantum gravity provide
indications for a discrete structure at small scales.

What are the relevant scales on which effects of quantum gravity should be
unavoidable? As has already been shown by Max Planck in 1899, the funda-
mental constants speed of light (c), gravitational constant (G), and quantum
of action (�) can be combined in a unique way (up to a dimensionless factor)
to yield units of length, time, and mass. In Planck’s honour they are called
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Planck length, lP, Planck time, tP, and Planck mass, mP, respectively. They
are given by the expressions

lP =

√

�G

c3
≈ 1.62× 10−33 cm , (3)

tP =
lP
c

=

√

�G

c5
≈ 5.40× 10−44 s , (4)

mP =
�

lPc
=

√

�c

G
≈ 2.17× 10−5 g ≈ 1.22× 1019 GeV . (5)

The Planck mass seems to be a rather large quantity by microscopic standards.
One has to keep in mind, however, that this mass (energy) must be concen-
trated in a region of linear dimension lP in order to see direct quantum-gravity
effects. In fact, the Planck scales are attained for an elementary particle whose
Compton wavelength is (apart from a factor of 2) equal to its Schwarzschild
radius,

�

mPc
≈ RS ≡ 2GmP

c2
,

which means that the spacetime curvature of such an elementary particle is
non-negligible. A truly unified theory may, of course, contain other param-
eters. An example is string theory where the fundamental ‘string length’ ls
appears as the fundamental scale instead of the Planck length (which there is
a derived quantity).

The ratio of atomic scales to the Planck scale is expressed by the ‘fine
structure constant of gravity’,

αg =
Gm2

pr

�c
≡

(

mpr

mP

)2

≈ 5.91× 10−39 , (6)

where mpr denotes the proton mass. Its smallness is responsible for the unim-
portance of quantum-gravitational effects on laboratory and astrophysical
scales, and for the separation between micro- and macrophysics. It is interest-
ing that structures in the universe occur for masses which can be expressed
as simple powers of αg in units of mpr, cf. [4]. For example, stellar masses are
of the order α

−3/2
g mpr, while stellar lifetimes are of the order α

−3/2
g tP. It is

also interesting to note that the size of human beings is roughly the geomet-
ric mean of Planck length and size of the observable universe. It is an open
question whether a fundamental theory of quantum gravity can provide an
explanation for such values, for example, for the ratio mpr/mP, or not. If not,
only an anthropic principle could yield a—not very satisfying—‘explanation’.
The challenge is to find a non-anthropic solution.

Below the level of full quantum gravity one can distinguish from a concep-
tual point of view at least two other levels. The first, lowest, level deals with
quantum mechanics in external gravitational fields (either described by GR
or its Newtonian limit). No back reaction on the gravitational field is taken
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into account. This is the only level where experiments exist so far. Already
in the 1970s, experiments of neutron interferometry were performed in the
gravitational field of the Earth. It was possible, in particular, to show that
the weak equivalence principle holds at the given level of precision. More re-
cently, gravitational quantum bound states of neutrons in the field of the Earth
have been measured. A detailed review of the interaction between gravity and
mesoscopic quantum systems can be found in [5].

The second level concerns quantum field theory in external gravitational
fields. One has attempted to include the back reaction of the quantum fields
onto the gravitational field in various models, but without final result. Al-
though experimental data are still lacking, there exist on this level at least
precise predictions. The most important one concerns Hawking radiation for
black holes [6]. A black hole radiates with temperature

TH =
�κ

2πkBc
, (7)

where κ is the surface gravity of a stationary black hole which by the no-hair
theorem is uniquely characterized by its mass M , its angular momentum J ,
and its electric charge Q. In the particular case of the spherically symmetric
Schwarzschild black hole one has κ = c4/4GM = GM/R2

S and therefore

TH =
�c3

8πkBGM
≈ 6.17× 10−8

(

M�
M

)

K . (8)

The black hole shrinks due to Hawking radiation and possesses a finite lifetime.
The final phase, where γ-radiation is being emitted, could be observable. The
temperature (8) is unobservably small for black holes that result from stellar
collapse. One would need primordial black holes produced in the early universe
because they could possess a sufficiently low mass, cf. [7]. For example, black
holes with an initial mass of 5× 1014 g would evaporate at the present age of
the universe. In spite of several attempts, no experimental hint for black-hole
evaporation has been found. Primordial black holes can result from density
fluctuations produced during an inflationary epoch. However, they can only be
produced in sufficient numbers if the scale invariance of the power spectrum
is broken at some scale, cf. [8]. It should also be mentioned that small black
holes may even be produced in future accelerators such as the Large Hadron
Collider (LHC) if the idea is correct that spacetime possesses more than four
dimensions with properties such that the higher-dimensional Planck energy
is much smaller than mP. Motivation for such extra dimensions comes from
string theory, cf. the contribution by Louis et al. to this book.

It must be emphasized that the expression for TH contains all fundamental
constants of nature. One may speculate that this expression—relating the
macroscopic parameters of a black hole with thermodynamic quantities—plays
a similar role for quantum gravity as de Broglie’s relations E = �ω and p = �k
once played for the development of quantum theory [9]. Hawking radiation was
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derived in the semiclassical limit in which the gravitational field can be treated
classically. According to (8), the black hole loses mass through its radiation
and becomes hotter. After it has reached a mass of the size of the Planck
mass (5), the semiclassical approximation breaks down and the full theory
of quantum gravity should be needed. Black-hole evaporation thus plays a
crucial role in any approach to quantum gravity.

Since black holes radiate thermally, they also possess an entropy, the
‘Bekenstein–Hawking entropy’, which is given by the expression

SBH =
kBc

3A

4G�

= kB
A

4l2P
, (9)

where A is the surface area of the event horizon. For a Schwarzschild black
hole with mass M , this reads

SBH ≈ 1.07× 1077kB

(

M

M�

)2

. (10)

Since the Sun has an entropy of about 1057kB, this means that a black hole
resulting from the collapse of a star with a few solar masses would experience
an increase in entropy by 20 orders of magnitude during its collapse. It is
one of the challenges of any approach to provide a microscopic explanation
for this entropy, i.e. to derive (9) from a counting of microscopic quantum
gravitational states according to

SBH = −kBtr(ρ ln ρ) , (11)

where ρ denotes the reduced density matrix of the system.
There exists a related effect to (7) in flat Minkowski space. An observer

with uniform acceleration a experiences the standard Minkowski vacuum not
as empty, but as filled with thermal radiation of temperature

TDU =
�a

2πkBc
≈ 4.05× 10−23 a

[cm
s2

]

K . (12)

This temperature is often called the ‘Davies-Unruh temperature’. Formally,
it arises from (7) through the substitution of κ by a. This can be understood
from the fact that event horizons are present in both the black-hole case
and the acceleration case. Although (12) seems to be a small effect, it was
suggested to search for it in accelerators or in experiments with ultra-intense
lasers, without definite success up to now.

As we have already mentioned above, experimental clues for quantum
gravity are elusive. A direct probe of the Planck scale (5) in high-energy ex-
periments would be illusory. In fact, an accelerator using current laws would
have to have the size of several thousand light years in order to probe the
Planck energy mPc

2 ≈ 1019 GeV. However, it is imaginable that effects
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of quantum gravity can in principle occur at lower energy scales. Possibil-
ities could be non-trivial applications of the superposition principle for the
quantized gravitational field or the existence of discrete quantum states in
black-hole physics or the early universe. But one might also be able to ob-
serve quantum-gravitational correction terms to established theories, such as
correction terms to the functional Schrödinger equation in an external space-
time or effective terms violating the weak equivalence principle. Such effects
could potentially be measured in the anisotropy spectrum of the cosmic mi-
crowave background radiation or in the forthcoming satellite tests of the equiv-
alence principle, such as MICROSCOPE or STEP.

Various approaches to quantum gravity give a hint at the existence of
a discrete structure of spacetime at the smallest scales. Such a microstruc-
ture could be recognizable, for example, from modified dispersion relations of
electromagnetic radiation coming from far-away objects (e.g. γ-ray bursts).

A truly fundamental theory should have such a rigid structure that all
phenomena in the low-energy regime, such as particle masses or coupling
constants, could be predicted in an unambiguous way. As there is no direct
experimental hint yet, most work in quantum gravity focuses on the attempt
to construct a mathematically and conceptually consistent (and appealing)
framework. But one should also keep in mind Einstein’s dictum that only the
final theory specifies what can be observed.

There is, of course, no a priori given starting point in the methodological
sense. In this context Chris Isham makes a distinction between a ‘primary
theory of quantum gravity’ and a ‘secondary theory’ [10]. In the primary
approach, one starts with a given classical theory and applies heuristic quan-
tization rules. This is the approach usually adopted, and it was successfully
applied, for example, in quantum electrodynamics (QED). In most cases, the
starting point is GR, leading to ‘Quantum General Relativity’, but one could
also start from another classical theory such as the Brans–Dicke theory. One
usually distinguishes between ‘canonical’ and ‘covariant’ approaches. Covari-
ant approaches employ four-dimensional covariance at some stage of the for-
malism. Examples include perturbation theory (Feynman-diagrammatic ex-
pansion of the Einstein–Hilbert action), renormalization-group approaches,
and path integral methods. Canonical approaches, on the other hand, em-
ploy a Hamiltonian formalism and thus need an identification of the canonical
variables and their conjugate momenta. Examples are quantum geometro-
dynamics and loop quantum gravity, their difference lying in the choice of
variables and momenta. Details of these approaches can be found in [1] and in
the other contributions to the quantum-gravity part of this book. The main
advantage of quantum GR is that the starting point is given—the classical
theory. The main disadvantage is that one does not arrive immediately at a
unified theory of all interactions.

The opposite holds for a ‘secondary theory’. The ambition is to start with
a fundamental quantum framework of all interactions and trying to derive
(quantum) GR in certain limiting situations, for example, through an energy
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expansion. The most important example here is string theory (M-theory). The
main advantage is that the fundamental quantum theory automatically yields
a unification. The main disadvantage is that the starting point is entirely
speculative. In practice, however, string theory is in its present state also
defined by the detour of quantizing a classical theory (such as the Nambu–
Goto string). Concerning this aspect, quantum GR and string theory use
similar methods.

Even if quantum GR were superseded by a more fundamental theory such
as string theory, it should nevertheless be valid at least as an effective theory
in some appropriate limit. The reason is that far away from the Planck scale,
classical GR is the appropriate theory, which in turn must be the classical
limit of an underlying quantum theory. Except perhaps close to the Planck
scale itself, quantum GR should be a viable framework (such as QED, which
is also supposed to be only an effective theory). Nevertheless, quantum GR is
a candidate for a theory of quantum gravity at all scales.

Quantum GR is perturbatively a non-renormalizable theory (the gravita-
tional constant G has negative mass dimension). In spite of this, it may lead
to definite results on the effective level. For example, Bjerrum-Bohr et al.
[11] have calculated the quantum gravitational corrections to the Newtonian
potential between two masses m1 and m2,

V (r) = −Gm1m2

r

(

1 + 3
G(m1 + m2)

rc2
+

41
10π

G�

r2c3

)

. (13)

This result is independent of the ambiguities that are present at higher en-
ergies. In fact, effective field theories are successfully applied elsewhere, for
example ‘chiral perturbation theory’ in QCD (where one considers the limit
of the pion mass mπ → 0) is such an effective theory.

An important question in the formal quantization of a given classical the-
ory is which of the structures in the classical theory should be quantized,
i.e. should be subject to the superposition principle, and which structures
should remain as classical (or absolute, non-dynamical) structures. Isham dis-
tinguishes the following hierarchy of structures [12]:

Point set of events −→ topological structure −→ differentiable mani-
fold −→ causal structure −→ Lorentzian structure.

Most approaches subject the Lorentzian and therefore the causal structure
to quantization, but keep the manifold structure fixed. This is, however, not
the only possibility. It might be that even the topological structure is funda-
mentally quantized. According to the Copenhagen interpretation of quantum
theory, all these structures would probably have to stay classical, because
they are thought to be necessary ingredients for the measurement process.
For the purpose of quantum gravity, such a viewpoint is, however, insufficient
and probably inconsistent. The modern attitude is to try to avoid in quantum
gravity all absolute structures—this is referred to as background independence.
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Quantum geometrodynamics and loop quantum gravity seem to implement
this principle, whereas in the present state of string theory it is only partially
implemented.
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1 Introduction

The really novel feature of general relativity (henceforth abbreviated GR),
as compared to other field theories in physics, is that spacetime is not a
fixed background arena that merely stages physical processes. Rather, space-
time is itself a dynamical entity, meaning that its properties depend in parts
on its specific matter content. Hence, contrary to the Newtonian picture,
in which spacetime acts (via its inertial structure) but is not acted upon
by matter, the interaction between matter and spacetime now goes both
ways.

Saying that the spacetime is ‘dynamic’ does not mean that it ‘changes’
with respect to any given external time. Time is clearly within, not exter-
nal to spacetime. Accordingly, solutions to Einstein’s equations, which are
whole spacetimes, do not as such describe anything evolving. In order to
take such an evolutionary form, which is, for example, necessary to formu-
late an initial value problem, we have to re-introduce a notion of ‘time’
with reference to which we may speak of ‘evolution’. This is done by in-
troducing a structure that somehow allows to split spacetime into space and
time.

Let us explain this in more detail: suppose we are given a spacetime, that
is, a four-dimensional differentiable manifold M with Lorentzian metric g. We
assume that M can be foliated by a family {Σt | t ∈ R} of spacelike leaves.
That is, for each number t there is an embedding of a fixed three-dimensional
manifold Σ into M ,

Et : Σ →M , (1)

whose image Et(Σ) ⊂ M is just Σt, which is a spacelike submanifold of M ;
see Fig. 1. It receives a Riemannian metric by restricting the Lorentzian metric
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Σ Et

Et′

Et′′

Σt

Σt′

Σt′′
M

Fig. 1. Foliation of spacetime M by a one-parameter family of embeddings Et of
the 3-manifold Σ into M . Σt is the image in M of Σ under Et. Here the leaf Σt′ is
drawn to lie to the past and Σt′′ to the future of Σt

g of M to the tangent vectors of Σt. This can be expressed in terms of the
3-manifold Σ. If we endow Σ with the Riemannian metric

ht := E∗t g , (2)

then (Σ, ht) is isometric to the submanifold Σt with the induced metric.
Each three-dimensional leaf Σt now corresponds to an instant of time t,

where t is so far only a topological time: it faithfully labels instants in a
continuous fashion, but no implication is made as to its relation to actual
clock readings. The statement of such relations can eventually only be made
on the basis of dynamical models for clocks coupled to the gravitational field.

By means of the foliation we now recover a notion of time: we view
spacetime, (M, g), as the one-parameter family of spaces, t �→ (Σ, ht). Space-
time then becomes nothing but a ‘trajectory of spaces’. In this way we obtain
a dynamical system whose configuration variable is the Riemannian metric on
a 3-manifold Σ. It is to make this point precise that we carefully distinguish
between the manifold Σ and its images Σt in M . In the dynamical formulation
given now, there simply is no spacetime to start with and hence no possibility
to embed Σ into something. Only after solving the dynamical equations can
we construct spacetime and interpret the time dependence of the metric of Σ
as being brought about by ‘wafting’ Σ through M via a one-parameter family
of embeddings Et. But initially there is only a 3-manifold Σ of some topo-
logical type1 and the equations of motion together with some suitable initial
data. For a fuller discussion we refer to the comprehensive work by Isham and
Kuchař [13, 14].
1 It can be shown that the Einstein equations do not pose any obstruction to the

topology of Σ, that is, solutions exist for any topology. However, one often im-
poses additional requirements on the solution. For example, one may require that
there exists a moment of time symmetry, which will make the corresponding in-
stant Σt a totally geodesic submanifold of M , like e.g. in recollapsing cosmological
models at the moment of maximal expansion. In this case the topology of Σ will
be severely restricted. In fact, most topologies Σ will only support geometries
that always expand or contract somewhere.
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2 The Initial-Value Formulation of GR

Whereas a specified motion of Σ through M , characterized by the family
of embeddings (1), gives rise to a one-parameter family of metrics ht, the
converse is not true. That is to say, it is not true that any one-parameter
family of metrics ht of Σ can be obtained from a given spacetime (M, g) and
a one-parameter family of embeddings Et, such that (2) holds.

Moreover, there is clearly a huge redundancy in creating (M, g) from the
family {(Σ, ht) | t ∈ R}, since there are obviously many different motions of
Σ through the same M , which give rise to apparently different solution curves
ht. This redundancy can be locally parameterized by four functions, on Σ: a
scalar field α and a vector field β. In the embedding picture, they describe
the components of the velocity vector field

∂

∂t
:=

d

dt
Et (3)

normal and tangential to the leaves Σt respectively. We write

∂

∂t
= αn + β , (4)

where n is the normal to Σt. The tangential component, β, just generates
intrinsic diffeomorphisms on each Σt, whereas the normal component, α, really
advances one leaf Σt to the next one; see Fig. 2.

For the initial-value problem it is the derivative along the normal n of the
3-metric h, denoted by K, that gives the essential information. Hence we write

∂ht
∂t

= αKt + Lβht . (5)

In the embedding picture, Kt is the extrinsic curvature of Σt in M .

Σt

Σt+dt

p

p′

β

αn∂
∂t

Fig. 2. Infinitesimally nearby leaves Σt and Σt+dt. For some point q ∈ Σ, the
image points p = Et(q) and p′ = Et+dt(q) are connected by the vector ∂/∂t|p, whose
components tangential and normal to Σt are β and αn, respectively. n is the normal
to Σt in M , β is called the ‘shift vector-field’ and α the ‘lapse function’ on Σt
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The first-order evolution equations that result from Einstein’s field equa-
tions are then of the general form

∂ht
∂t

= F1(ht,Kt;α, β) , (6)

∂Kt

∂t
= F2(ht,Kt;α, β; matter) , (7)

where F1 in (6) is given by the right-hand side of (5). F2 is a more complicated
function whose precise structure need not interest us now and which also
depends on matter variables; see e.g. [8].

3 Why Constraints

As we have seen, the initial data for the gravitational variables consist of a
differentiable 3-manifold Σ, a Riemannian metric h – the configuration vari-
able, and another symmetric second rank tensor field K on Σ – the velocity
variable. However, the pair (h,K) cannot be chosen arbitrarily. This is be-
cause there is a large redundancy in describing a fixed spacetime M by a
foliation (1). On the infinitesimal level this gauge freedom is just the free-
dom of choosing α and β. The gauge transformations generated by β are just
the spatial diffeomorphisms of Σ. β may be an arbitrary function of t, which
corresponds to the fact that we may arbitrarily permute the points in each
leaf Σt separately (only restricted by some differentiability conditions). The
gauge transformations generated by α correspond to pointwise changes in the
velocities with which the leaves Σt push through M . These too may vary
arbitrarily within the leaves as well as with coordinate time t.

Whenever there is gauge freedom in a dynamical theory, there are so-called
constraints, that is, conditions which restrict the initial data; see e.g. [10].
For each gauge freedom parameterized by an arbitrary function, there is one
functional combination of the initial data which has to vanish. In our case there
are four gauge functions, α, and the three components of β. Accordingly there
are four constraints, which group into one scalar or Hamiltonian constraint,
H [h,K] = 0, and three combined in the vector or diffeomorphism constraint,
D[h,K] = 0. Their explicit expressions are2

H [h,K] = (2κ)−1 Gab cdKabKcd − (2κ)−1
√
h
(

(3)R− 2Λ
)

+
√
hρ , (8)

Da[h,K] = − κ−1 Gab cd∇bKcd +
√
hja . (9)

Here ρ and ja are the energy and momentum densities of the matter, ∇
and (3)R are the Levi-Civita connection and its associated scalar curvature of
2 Here and below we shall write

√
h :=

√

det{hab} and use the abbreviation κ =
8πG/c4. Hence κ has the physical dimension of s2 · m−1 · kg−1. We shall set c = 1
throughout.
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(Σ, h). Finally Gab cd is the so-called ‘DeWitt metric’, which at each point of
Σ defines an h-dependent Lorentzian metric on the 1 + 5-dimensional space
of symmetric second-rank tensors at that point.3 Its explicit form is given by

Gab cd =
√
h

2

(

hachbd + hadhbc − 2habhcd
)

. (10)

Note that the linear space of symmetric second-rank tensors is viewed here
as the tangent space (‘velocity space’) of the space Riem(Σ) of Riemannian
metrics on Σ. From (10) one sees that it is the trace part of the ‘velocities’,
corresponding to changes of the scale (conformal part) of the Riemannian
metric, which span the negative-norm velocity directions.

4 Comparison with Conventional
Form of Einstein’s Equations

The presence of constraints and their relation to the evolution equations is
the key structure in canonical GR. It is therefore instructive to point out how
this structure arises from the conventional, four-dimensional form of Einstein’s
equations. Before doing this, it is useful to first remind ourselves on the anal-
ogous situation in electrodynamics.

So let us first consider electrodynamics in Minkowski space. As usual, we
write the field tensor F as exterior differential of a vector potential A, that
is, F = dA. In components this reads Fμν = ∂μAν − ∂νAμ. Here Ei = F0i are
the components of the electric, Bi = −Fjk of the magnetic field, where ijk is
a cyclic permutation of 123. The homogeneous Maxwell equations now simply
read dF = 0, whereas the inhomogeneous Maxwell equations are given by (in
components)

Mμ := ∂νF
μν + 4π

c jμ = 0 , (11)

where here jμ is the electric four-current. Due to its antisymmetry, the field
tensor obeys the identity

∂μ∂νF
μν ≡ 0 . (12)

Taking the divergence of (11) and using (12) leads to

∂μM
μ ≡ 4π

c ∂μj
μ = 0 , (13)

showing the well-known fact that Maxwell’s equations imply charge conserva-
tion as integrability condition.

Let us now interpret the role of charge conservation in the initial-value
problem. Decomposing (12) into space and time derivatives yields

∂0∂νF
0ν ≡ −∂a∂νF

aν . (14)
3 The Lorentzian signature of the DeWitt metric has nothing to do with the

Lorentzian signature of the spacetime metric: it persists in Euclidean gravity.
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Even though the right-hand side contains third derivatives in the field Aμ, time
derivatives appear at most in second order (since ∂a is spatial). Hence, since it
is an identity, ∂νF 0ν contains time derivatives only up to first order. But the
initial data for the second-order equation (11) consist of the field Aμ and its
first-time derivative. Hence the time component M0 of Maxwell’s equations
gives a relation amongst initial data; in other words, it is a constraint. Clearly
this is just the Gauß constraint ∇ · E − 4πρ = 0 (here ρ is the electric
charge density). Only the three spatial components of (11) contain second
time derivatives and hence propagate the fields. They provide the evolutionary
part of Maxwell’s equations.

Now, assume we are given initial data satisfying the constraint M0 = 0,
which we evolve according to Ma = 0. How can we be sure that the evolved
data again satisfy the constraint? To see when this is the case, we use the
identity (13) and solve it for the time derivative of M0:

∂0M
0 ≡ −∂aM

a + 4π
c ∂μj

μ . (15)

This shows that if initially Ma = 0 (and hence ∂aM
a = 0), then the constraint

M0 = 0 is preserved in time if and only if ∂μj
μ = 0. Charge conservation is

thus recognized as the necessary and sufficient condition for the compatibility
between the constraint part and the evolutionary part of Maxwell’s equations.

Finally we wish to make another remark concerning the interplay between
constraints and evolution equations. It is clear that a solution Fμν to (11)
satisfies the constraint on any simultaneity hypersurface of an inertial ob-
server (i.e. spacelike plane). If the normal to the hypersurface is nμ, this just
states that Mμ = 0 implies Mμnμ = 0. But the converse is obviously also
true: if Mμnμ = 0 for all timelike nμ, then Mμ = 0. In words: given an elec-
tromagnetic field that satisfies the constraint (for given external current jμ)
on any spacelike plane in Minkowski space, then this field must necessarily
satisfy Maxwell’s equations. In this sense, Maxwell’s equations are the unique
propagation law that is compatible with Gauß constraint.

After this digression we return to GR, where we can perform an en-
tirely analogous reasoning. We start with Einstein’s equations, in which the
spacetime metric gμν is the analog of Aμ and the Einstein tensor Gμν :=
Rμν − 1

2g
μνR is the analog of ∂νFμν . They read

Eμν := Gμν − Λ− κT μν = 0 . (16)

Due to four-dimensional diffeomorphism invariance, we have the identity
(twice contracted second Bianchi-Identity):

∇μGμν ≡ 0 , (17)

which is the analog of (12). Taking the covariant divergence of (16) and using
(17) yields

∇μEμν = −κ∇μT μν = 0 , (18)



Canonical Quantum Gravity 137

which is the analog of (13). Hence the vanishing covariant divergence of T μν

is an integrability condition of Einstein’s equations, just as the divergenceless-
ness of the electric four-current was an integrability condition of Maxwell’s
equations.4

In order to talk about ‘evolution’, we consider the foliation (1) of M and
locally use coordinates {x0, xa} such that ∂/∂x0 is the normal n to the leaves
and all ∂/∂xa are tangential. Expanding (17) in terms of partial derivatives
gives

∂0G
0ν = −∂aG

aν − ΓμμλG
λν − Γ νμλG

μλ , (19)
which is the analog of (14). Now, since the Gμν contain at most second and
the Γ λμν at most first derivatives of the metric gμν , this identity immediately
shows that the four components G0ν (ν = 0, 1, 2, 3) contain at most first-time
derivatives ∂/∂x0. But Einstein’s equations are of second order, hence the
four equations E0ν = 0 are relations amongst the initial data, rather than
being evolution equations. In fact, up to a factor of −2 they are just the
constraints (8–9):

H = −2E00 = −2(G00 − Λ − κT 00) , (20)

Da = −2E0a = −2(G0a − Λ − κT 0a) . (21)

Moreover, the remaining purely spatial components of Einstein’s equations
are equivalent to the 12 first-order evolution equations (6–7).

The interplay between constraints and evolution equations can now be fol-
lowed along the very same lines as for the electrodynamic analogy. Expanding
the left equality of (18) in terms of partial derivatives gives

∂0E
0ν = −∂aE

aν − ΓμμλE
λν − Γ νμλE

μλ − κ∇μT μν , (22)

which is the analog of (15). It shows that the constraints are preserved by
the evolution if and only if the energy–momentum tensor of the matter has
vanishing covariant divergence.

Let us now turn to the last analogy: the uniqueness of the evolution that
preserves constraints. Clearly Einstein’s equations Eμν imply Eμνnμ = 0
for any timelike vector field nμ. Hence the constraints are satisfied on any
spacelike slice through spacetime. Again the converse is also true: given a
gravitational field such that Eμνnμ = 0 for any timelike nμ (and given exter-
nal T μν), then this field must necessarily satisfy Einstein’s equations. In this
sense Einstein’s equations follow uniquely from the condition of constraint
preservation.

This property will be crucial for the interpretation of the quantum theory
discussed below. We know from quantum mechanics that the classical tra-
jectories have completely disappeared at the fundamental level. As we have
4 There is, however, a notable difference in the physical interpretation of divergence-

lessness of a tensor field on one hand and a vector field on the other: ∇μT
μν = 0

does not as such imply a conservation law. Only in presence of a spacetime sym-
metry, that is, a Killing vector field Kν , the current Jμ = TμνKν is conserved,
∇μJ

μ = 0, and hence gives rise to a conserved quantity.
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discussed above, the analogue to a trajectory is in GR provided by a space-
time given as a set of three-dimensional geometries. In quantum gravity, the
spacetime will therefore disappear like the classical trajectory in quantum me-
chanics. It is therefore not surprising that the evolution equations (6) and (7)
will be absent in quantum gravity. All the information will be contained in
the quantized form of the constraints (8) and (9).

5 Canonical Gravity

We have seen above that Einstein’s equations can be written as a dynamical
system (6–7) with constraints (8–9). Here we wish to give its canonical for-
mulation. Basically this means to introduce momenta for the velocities and
write the first-order equations of motions as Hamilton equations. For this we
have to identify the Poisson structure and the Hamiltonian. The result is this:
as before, the configuration variable is the Riemannian metric hab on Σ. Its
canonical momentum is now given by

πab = (2κ)−1 Gab cdKcd = (2κ)−1
√
h(Kab − habKc

c ) , (23)

so that the Poisson brackets are

{hab(x), πcd(y)} = 1
2 (δcaδ

d
b + δdaδ

c
b)δ

(3)(x, y) , (24)

where δ(3)(x, y) is the Dirac distribution on Σ.
Elimination of Kab in favour of πab in the constraints leads to their canon-

ical form:

H [h, π] = 2κGab cdπ
abπcd − (2κ)−1

√
h((3)R− 2Λ) +

√
hρ , (25)

Da[h, π] = −2∇bπab +
√
hja , (26)

where now5

Gab cd = 1
2
√
h
(hachbd + hadhbc − habhcd) . (27)

Likewise, rewriting (6–7) in terms of the canonical variables shows that they
are just the flow equations for the following Hamiltonian:

H[h, π] =
∫

Σ

d3x
{

α(x)H [h, π](x) + βa(x)Da[h, π](x)
}

+ boundary terms.

(28)
The crucial observation to be made here is that, up to boundary terms, the
total Hamiltonian is a combination of pure constraints. The boundary terms

5 Note the difference in the factor of two in the last term, as compared to (10).
Gab cd is the inverse to Gab cd, that is, Gab nmGnm cd = 1

2
(δa

c δ
b
d + δa

dδ
b
c), and not

obtained by simply lowering the indices using hab.
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generally appear if Σ is non-compact, as it will be the case for the descrip-
tion of isolated systems, like stars or black holes. In this case the boundary
terms are taken over closed surfaces at spatial infinity and represent con-
served Poincaré charges, like energy, linear and angular momentum, and the
quantity associated with asymptotic boost transformations. If, however, Σ is
closed (i.e. compact without boundary) all of the evolution will be generated
by constraints, that is, pure gauge transformations! In that case, evolution,
as described here, is not an observable change. For that to be the case we
would need an extrinsic clock, with respect to which ‘change’ can be defined.
But a closed universe already contains – by definition – everything physical,
so that no external clock exists. Accordingly, there is no external time param-
eter. Rather, all physical time parameters are to be constructed from within
our system, that is, as functional of the canonical variables. A priori there is
no preferred choice of such an intrinsic time parameter. The absence of an
extrinsic time and the non-preference of an intrinsic one is commonly known
as the problem of time in Hamiltonian (quantum-)cosmology.

Finally we turn to the commutation relation between the various con-
straints. For this it is convenient to integrate the local constraints (25–26)
over lapse and shift functions. Hence we set (suppressing the phase-space ar-
gument [h, π])

H(α) =
∫

Σ

d3xH(x)α(x) , (29)

D(β) =
∫

Σ

d3xDa(x)βa(x) . (30)

A straightforward but slightly tedious computation gives

{D(β),D(β′)} = D([β, β′]) , (31)
{D(β),H(α)} = H(β(α)) , (32)
{H(α),H(α′)} = D(α∇α′ − α′∇α) . (33)

There are three remarks we wish to make concerning these relations. First, (31)
shows that the diffeomorphism generators form a Lie subalgebra. Second, (32)
shows that this Lie subalgebra is not a Lie ideal. This means that the flow
of the Hamiltonian constraint does not leave invariant the constraint hyper-
surface of the diffeomorphism constraint. Finally, the term α∇α′ − α′∇α in
(33) contains the canonical variable h, which is used implicitly to raise the
index in the differential in order to get the gradient ∇. This means that
the relations above do not make the set of all H(α) and all D(β) into a Lie
algebra.6

6 Sometimes this is expressed by saying that this is an ‘algebra with structure
functions’.
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6 The General Kinematics of Hypersurface Deformations

In this section we wish to point out that the relations (31–33) follow a general
pattern, namely to represent the ‘algebra’ of hypersurface deformations, or in
other words, infinitesimal changes of embeddings E : Σ → M . To make this
explicit, we introduce local coordinates xa on Σ and yμ on M . An embedding
is then locally given by four functions yμ(x), such that the 3×4 matrix yμ,a has
its maximum rank 3 (we write yμ,a := ∂ay

μ). The components of the normal
to the image E(Σ) ⊂ M are denoted by nμ, which should be considered as
functional of yμ(x). The generators of normal and tangential deformations
of E with respect to the lapse function α and shift vector field β are then
given by

Nα =
∫

Σ

d3x α(x)nμ[y(x)]
δ

δyμ(x)
, (34)

Tβ =
∫

Σ

d3x βa(x) yμ,a(x)
δ

δyμ(x)
, (35)

which may be understood as tangent vectors to the space of embeddings of Σ
into M . A calculation7 then leads to the following commutation relations

[Tβ , Tβ′ ] = −T[β,β′] , (36)
[Tβ , Nα] = −Nβ(α) , (37)
[Nα, Nα′ ] = −Tα∇α′−α′∇α . (38)

Up to the minus signs this is just (31–33). The minus signs are just the usual
ones that one always picks up when going from the action of vector fields to
the Poisson action of the corresponding phase-space functions. (In technical
terms, the mapping from vector fields to phase-space functions is a Lie-anti-
homomorphism.)

This shows that (31–33) just mean that we have a Hamiltonian realization
of hypersurface deformations. In particular, (31–33) is neither characteristic
of the action nor the field content: Any four dimensional diffeomorphism in-
variant theory will gives rise to this very same ‘algebra’. It can be shown that
under certain general locality assumptions the expressions (25) and (26) give
the unique 2-parameter (here κ and Λ) family of realizations for N and T
satisfying (36–38) on the phase space parameterized by (hab, πab); see [11]
and also [18].

7 Equation (36) is immediate. To verify (37–38) one needs to compute
δnμ[y(x)]/δyν(x′). This can be done in a straightforward way by varying

g(y(x))μνn
μ[y(x)]nν [y(x)] = −1 and gμν(y(x))yμ

,a(x)nν [y(x)] = 0

with respect to y(x).
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7 Topological Issues

As we have just discussed, Einstein’s equations take the form of a constrained
Hamiltonian system if put into canonical form. The unconstrained configura-
tion space is the space of all Riemannian metrics on some chosen 3-manifold
Σ. This space is denoted by Riem(Σ). Any two Riemannian metrics that dif-
fer by an action of the diffeomorphism constraint are gauge equivalent and
hence to be considered as physically indistinguishable. Let us briefly mention
that the question of whether and when the diffeomorphism constraint actually
generates all diffeomorphisms of Σ is rather subtle. Certainly, what is gener-
ated lies only in the identity component of the latter, but even on that it may
not be onto. This occurs, for example, in the case where Σ contains asymptot-
ically flat ends with non-vanishing Poincaré charges associated. Asymptotic
Poincaré transformations are then not interpreted as gauge transformations
(otherwise the Poincaré charges were necessarily zero), but as proper physical
symmetries (i.e. changes of state that are observable in principle).

Leaving aside the possible difference between what is generated by the
constraints and the full group Diff(Σ) of diffeomorphisms of Σ, we may con-
sider the quotient space Riem(Σ)/Diff(Σ) of Riemannian geometries. This
space is called superspace in the relativity community (this has nothing to
do with supersymmetry), which we denote by S(Σ). Now from a topological
viewpoint Riem(Σ) is rather trivial. It is a cone8 in the (infinite dimensional)
vector space of all symmetric second-rank tensor fields. But upon factoring
out Diff(Σ) the quotient space S(Σ) inherits some of the topological infor-
mation concerning Σ, basically because Diff(Σ) contains that information [6].
This is schematically drawn in Fig. 3.

In a certain generalized sense, GR is a dynamical system on the phase
space (i.e. cotangent bundle) built over superspace. The topology of super-
space is characteristic for the topology of Σ, though in a rather involved way.
Note that, by construction, the Hamiltonian evolution is that of a varying
embedding of Σ into spacetime. Hence the images Σt are all of the same
topological type. This is why canonical gravity in the formulation given here
cannot describe transitions of topology.

Note, however, that this is not at all an implication by Einstein’s equations.
Rather, it is a consequence of our restriction to spacetimes that admit a global
spacelike foliation. There are many solutions to Einstein’s equations that do
not admit such foliations globally. This means that these spacetimes cannot
be constructed by integrating the equations of motions (6–7) successively from
some initial data. Should we rule out all other solutions? The general feeling
seems to be that, at least in quantum gravity, topology changing classical
solutions should not be ruled out as possible contributors in the sum over
histories (path integral). Figure 4 shows two such histories. Whereas in the left

8 Any real positive multiple λh of h ∈ Riem(Σ) is again an element of Riem(Σ).
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Riem(Σ)

S(Σ)

Fig. 3. The topologically trivial space Riem(Σ), here drawn as the box above, is
fibered by the action of the diffeomorphism group. The fibers are the straight lines in
the box, where the sets consisting of three dashed and three solid lines, respectively,
form one fiber each. In the quotient space S(Σ) each fiber is represented by one point
only. By taking the quotient, S(Σ) receives the non-trivial topology from Diff(Σ).
To indicate this, S(Σ) is represented as a double torus

picture the universe simply ‘grows a nose’, it bifurcates in the right example
to become disconnected.

One may ask whether there are topological restrictions to such transi-
tions. First of all, it is true (though not at all obvious) that for any given two
3-manifolds Σi, Σf (neither needs to be connected) there is a 4-manifold M
whose boundary is just Σi ∪ Σf . In fact, there are infinitely many such M .
Amongst them, one can always find some which can be endowed with a glob-
ally regular Lorentz metric g, such that Σi and Σf are spacelike. However, if
topology changes, (M, g) necessarily contains closed timelike curves [2]. This
fact has sometimes been taken as rationale for ruling out topology change in
(classical) GR. But it should be stressed that closed timelike curves do not
necessarily ruin conventional concepts of predictability. In any case, let us
accept this slight pathology and ask what other structures we wish to define
on M . For example, in order to define fermionic matter fields on M we cer-
tainly wish to endow M with a SL(2,C) spin structure. This is where now the
first real obstructions for topological transitions appear [3].9 It is then pos-
sible to translate them into selection rules for transitions between all known
3-manifolds [4].

9 Their result is the following: let Σ = Σi ∪ Σf be the spacelike boundary of the
Lorentz manifold M , then dim

(

H0(Σ,Z2)
)

+ dim
(

H1(Σ,Z2)
)

has to be even for
M to admit an SL(2,C) spin structure.
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Σi

Σf

M

Σi

Σ1
fΣ2

f

M

Fig. 4. Spacetimes in which spatial sections change topology. In the (left) picture
the initial universe Σi has three, the final Σf four topological features (‘holes’ ) – it
‘grows a nose’ while staying connected. In the (right) picture the initial universe Σi

splits into two copies Σ1,2
f , so that Σf = Σ1

f ∪ Σ2
f . In both cases, the interpolating

spacetime M can be chosen to carry a Lorentzian metric with respect to which initial
and final hypersurfaces are spacelike, possibly at the price of making M topologically
complicated, like indicated in the right picture

So far the considerations were purely kinematical. What additional ob-
structions arise if the spacetime (M, g) is required to satisfy the field equa-
tions? Here the situation becomes worse. It is, for example, known that any
topology-changing spacetime that satisfies Einstein’s equations with matter
that satisfies the weak-energy condition Tμν l

μlν ≥ 0 for all lightlike lμ must
necessarily be singular.10 Hence it seems that we need to consider degenerate
metrics already on the classical level if topology change is to occur. Can we
relax the notion of ‘solution to Einstein’s equations’ so as to contain these
degenerate cases as well? The answer is ‘yes’ if instead of taking the metric as
basic variable we rewrite the equations in terms of vierbeine and connections
(first-oder formalism). It turns out that the kind of singularities one has to
cope with are very mild indeed: the vierbeine become degenerate on sets of
measure zero but, somewhat surprisingly, the curvature stays bounded every-
where. In fact, there is a very general method to generate an abundance of
such solutions [12].

It is a much-debated question whether topology-changing amplitudes are
suppressed or, to the contrary, needed in quantum gravity. On one hand, it has

10 In fact, this result can be considerably strengthened: instead of invoking Einstein’s
equations we only need to require Rμν l

μlν ≥ 0 for all lightlike lμ.
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been shown in the context of specific lower-dimensional models that matter
fields on topology-changing backgrounds may give rise to singularities corre-
sponding to infinite densities of particle production [1]. On the other hand,
leaving out topology-changing amplitudes in the sum-over-histories approach
is heuristically argued to be in conflict with expected properties of localized
pseudo-particle-like excitations in gravity (so-called ‘geons’), like, for example,
the usual spin-statistic relation [19]. Here there still seems to be much room
for speculations.

8 Geometric Issues

Just in the same way as any Lagrangian theory endows the configuration space
with the kinetic-energy metric, Riem(Σ) inherits a metric structure from the
‘kinetic-energy’ part of (8). Tangent vectors at h ∈ Riem(Σ) are symmetric
second-rank tensor fields on Σ and their inner product is given by the so-called
Wheeler–DeWitt metric:

Gh(V, V ′) =
∫

Σ

d3xGab cdVabV
′
cd . (39)

Due to the pointwise Lorentzian signature (1+5) of Gab cd it is of a hyper-
Lorentzian structure with infinitely many negative, null, and positive direc-
tions each. However, not all directions in the tangent space Th(Riem(Σ))
correspond to physical changes. Those generated by diffeomorphism, which
are of the form Vab = ∇aβb + ∇bβa for some vector field β on Σ, are pure
gauge. We call them vertical. The diffeomorphism constraint (26) for ja = 0 –
a case to which we now restrict for simplicity – now simply says that V must
be G–orthogonal to such vertical directions. We call such orthogonal direc-
tions horizontal. Moreover, it is easily seen that the inner product (39) is
invariant under Diff(Σ). All this suggests how to endow superspace, S(Σ),
with a natural metric: take two tangent vectors at a point [h] in S(Σ), lift
them to horizontal vectors at h in Riem(Σ), and there take the inner product
according to (39).

However, this procedure only works if the horizontal subspace of
Th(Riem(Σ)) is truly complementary to the vertical space of gauge direc-
tions. But this is not guaranteed due to G not being positive definite: when-
ever there are vertical directions of zero G-norm, there will be non-trivial
intersections of horizontal and vertical spaces. Sufficient conditions on h for
this not to happen can be derived: for example, a strictly negative Ricci ten-
sor [7]. The emerging picture is that there are open sets in S(Σ) in which
well-defined hyper-Lorentzian geometries exist, which are separated by closed
transition regions in which the signature of these metrics change. The tran-
sition regions precisely consist of those geometries [h] which possess vertical
directions of zero G-norm; see Fig. 5.
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Fig. 5. The space Riem(Σ), fibred by the orbits of Diff(Σ) (curved vertical lines).
Tangent directions to these orbits are called ‘vertical’, the G-orthogonal directions
‘horizontal’. Horizontal and vertical directions intersect whenever the ‘hyper-light-
cone’ touches the vertical directions, as in point h′. At h, h′, and h′′ the vertical di-
rection is depicted as time-, light-, and spacelike respectively. Hence [h′] corresponds
to a transition point where the signature of the metric in superspace changes

9 Quantum Geometrodynamics

Einstein’s theory of GR has now been brought into a form where it can be
subject to the procedure of canonical quantization. As we have argued above,
all the information that is needed is encoded in the constraints (25) and (26).
However, quantizing them is far from trivial [16]. One might first attempt
to solve the constraints on the classical level and then to quantize only the
reduced, physical, degrees of freedom. This has not even been achieved in
quantum electrodynamics (except for the case of freely propagating fields),
and it is illusory to achieve in GR. One therefore usually follows the proce-
dure proposed by Dirac and tries to implement the constraints as conditions
on physically allowed wave functionals. The constraints (25) and (26) then
become the quantum conditions

ĤΨ = 0 , (40)
D̂aΨ = 0 , (41)

where the ‘hat’ is a symbolic indication for the replacements of the classical
expressions by operators. This procedure also applies if other variables instead
of the three-metric and its momentum are used; for example, such quantum
constraints also play the role in loop quantum gravity, cf. the contributions
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of Nicolai and Peeters as well as Thiemann to this book. In the present case
the resulting formalism is called quantum geometrodynamics.

Quantum geometrodynamics is defined by the transformation of hab(x)
into a multiplication operator and πcd into a functional derivative operator,
πcd → −i�δ/δhcd(x). The constraints (25) and (26) then assume the form,
restricting here to the vacuum case for simplicity,

ĤΨ ≡
(

−2κ�

2Gabcd
δ2

δhabδhcd
− (2κ)−1

√
h
(

(3)R− 2Λ
)

)

Ψ = 0 , (42)

D̂aΨ ≡ −2∇b �

i
δΨ

δhab
= 0 . (43)

Equation (42) is called the Wheeler–DeWitt equation in honour of the work
by Bryce DeWitt and John Wheeler; see e.g. [16] for details and references. In
fact, these are again infinitely many equations (one equation per space point).
The constraints (43) are called the quantum diffeomorphism (or momentum)
constraints. Occasionally, both (42) and (43) are referred to as Wheeler–
DeWitt equations. In the presence of non-gravitational fields, these equations
are augmented by the corresponding terms.

The argument of the wave functional Ψ is the three-metric hab(x) (plus
non-gravitational fields). However, because of (43), Ψ is invariant under co-
ordinate transformations on three-dimensional space (it may acquire a phase
with respect to ‘large diffeomorphisms’ that are not connected with the iden-
tity). A most remarkable feature of the quantum constraint equations is their
‘timeless’ nature – the external parameter t has completely disappeared.11

Instead of an external time one may consider an ‘intrinsic time’ that is distin-
guished by the kinetic term of (42). As can be recognized from the signature
of the DeWitt metric (10), the Wheeler–DeWitt equation is locally hyper-
bolic, that is, it assumes the form of a local wave equation. The intrinsic
timelike direction is related to the conformal part of the three-metric. With
respect to the discussion in the last section one may ask whether there are re-
gions in superspace where the Wheeler–DeWitt metric exists and has precisely
one negative direction. In that case the Wheeler–DeWitt equation would be
strictly hyperbolic (rather than ultrahyperbolic) in a neighbourhood of that
point. It has been shown that such regions indeed exist and that they in-
clude neighbourhoods of the standard round three-sphere geometry [7]. This
implies that the full Wheeler–DeWitt equation that describes fluctuations
around the positive curvature Friedmann universe is strictly hyperbolic. In
this case the scale factor of the Friedmann universe could serve as an intrinsic
time. The indefinite nature of the kinetic term reflects the fact that gravity is
attractive [5].

11 In the case of asymptotic spaces such a parameter may be present in connec-
tion with Poincaré transformations at spatial infinity. We do not consider this
case here.
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There are many problems associated with the quantum constraints (42)
and (43). An obvious problem is the ‘factor-ordering problem’: the precise
form of the kinetic term is open – there could be additional terms propor-
tional to � containing at most first derivatives in the metric. Since second
functional derivatives at the same space point usually lead to undefined ex-
pressions such as δ(0), a regularization (and perhaps renormalization) scheme
has to be employed. Connected with this is the potential presence of anoma-
lies, cf. the contribution by Nicolai and Peeters. Another central problem is
what choice of Hilbert space one has to make, if any, for an interpretation
of the wave functionals. No final answer to this problem is available in this
approach [16].

What about the semiclassical approximation and the recovery of an
appropriate external time parameter in some limit? For the full quantum
constraints this can at least be achieved in a formal sense (i.e. treating
functional derivatives as if they were ordinary derivatives and neglecting the
problem of anomalies); see [16, 17]. The discussion is also connected to the
question: where does the imaginary unit i in the (functional) Schrödinger equa-
tion come from? The full Wheeler–DeWitt equation is real, and one would thus
also expect real solutions for Ψ . An approximate solution is found through a
Born–Oppenheimer type of scheme, in analogy to molecular physics. The state
then assumes the form

Ψ ≈ exp(iS0[h]/�)ψ[h, φ] , (44)

where h is an abbreviation for the three-metric and φ stands for non-
gravitational fields. In short, one finds that

• S0 obeys the Hamilton–Jacobi equation for the gravitational field and
thereby defines a classical spacetime which is a solution to Einstein’s equa-
tions (this order is formally similar to the recovery of geometrical optics
from wave optics via the eikonal equation).

• ψ obeys an approximate (functional) Schrödinger equation,

i� ∇S0∇ψ
︸ ︷︷ ︸

∂ψ
∂t

≈ Hm ψ , (45)

where Hm denotes the Hamiltonian for the non-gravitational fields φ. Note
that the expression on the left-hand side of (45) is a shorthand notation
for an integral over space, in which ∇ stands for functional derivatives
with respect to the three-metric. Semiclassical time t is thus defined in
this limit from the dynamical variables.

• The next order of the Born–Oppenheimer scheme yields quantum gravita-
tional correction terms proportional to the inverse Planck mass squared,
1/m2

P. The presence of such terms may in principle lead to observable ef-
fects, for example, in the anisotropy spectrum of the cosmic microwave
background radiation.
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The Born–Oppenheimer expansion scheme distinguishes a state of the form
(44) from its complex conjugate. In fact, in a generic situation both states
will decohere from each other, that is, they will become dynamically indepen-
dent [15]. This is a type of symmetry breaking, in analogy to the occurrence of
parity violating states in chiral molecules. It is through this mechanism that
the i and the t in the Schrödinger equation emerge.

The recovery of the Schrödinger equation (45) raises an interesting issue.
It is well known that the notion of Hilbert space is connected with the con-
servation of probability (unitarity) and thus with the presence of an external
time (with respect to which the probability is conserved). The question then
arises whether the concept of a Hilbert space is still required in the full theory
where no external time is present. It could be that this concept makes sense
only on the semiclassical level where (45) holds.

10 Applications

The major physical applications of quantum gravity concern cosmology and
black holes. Although the above-presented formalism exists, as yet, only on a
formal level, one can study models that present no mathematical obstacles.
Typically, such models are obtained by imposing symmetries on the solutions
of the equations [16]. Examples are spherical symmetry (useful for black holes)
and homogeneity and isotropy (useful for cosmology).

Quantum cosmology is the application of quantum theory to the universe
as a whole. Let us consider a simple example: a Friedmann universe with
scale factor a ≡ eα containing a massive scalar field φ. In this case, the
diffeomorphism constraints (43) are identically fulfilled, and the Wheeler–
DeWitt equation (42) reads

Ĥψ ≡
(

G�

2 ∂2

∂α2
− �

2 ∂2

∂φ2
+ m2φ2e6α − e4α

G

)

ψ(α, φ) = 0 . (46)

This equation is simple enough to find solutions (at least numerically) and to
study physical aspects such as the dynamics of wave packets and the semi-
classical limit [16].

There is one interesting aspect in quantum cosmology that possesses
far-reaching physical consequences. Because (42) does not contain an exter-
nal time parameter t, the quantum theory exhibits a kind of determinism
drastically different from the classical theory [16, 20]. Consider a model with
a two-dimensional configuration space spanned by the scale factor, a, and
a homogeneous scalar field, φ, see Fig. 6. (Such a model is described, for
example, by (46) with m = 0.) The classical model be such that there are so-
lutions where the universe expands from an initial singularity, reaches a maxi-
mum, and recollapses to a final singularity. Classically, one would impose, in a
Lagrangian formulation, a, ȧ, φ, φ̇ (satisfying the constraint) at some t0 (for
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give initial conditions 
on a=constant

Fig. 6. The classical and the quantum theory of gravity exhibit drastically different
notions of determinism

example, at the left leg of the trajectory), and then the trajectory would be
determined. This is indicated on the left-hand side of Fig. 6. In the quantum
theory, on the other hand, there is no t. The hyperbolic nature of a minisuper-
space equation such as (46) suggests to impose boundary conditions at a =
constant. In order to represent the classical trajectory by narrow wave pack-
ets, the ‘returning part’ of the packet must be present ‘initially’ (with respect
to a). The determinism of the quantum theory then proceeds from small a to
large a, not along a classical trajectory (which does not exist). This behaviour
has consequences for the validity of the semiclassical approximation and the
arrow of time. In fact, it may in principle be possible to understand the origin
of irreversibility from quantum cosmology, by the very fact that the Wheeler–
DeWitt equation is asymmetric with respect to the intrinsic time given by a.
The framework of canonical quantum cosmology is also suitable to address
the quantum-to-classical transition for cosmological variables such as the vol-
ume of the universe [15, 16]. Using the approach of loop quantum gravity (see
Thiemann’s contribution) one arrives at a Wheeler–DeWitt equation in cos-
mology which is fundamentally a difference equation instead of a differential
equation of the type (46). In the ensuing framework of loop quantum gravity
it seems that the classical singularities of GR can be avoided.

Singularity avoidance for collapse situations can also be found from spher-
ically symmetric models of quantum geometrodynamics. For example, in a
model with a collapsing null dust cloud, an initially collapsing wave packet
evolves into a superposition of collapsing and expanding packet [9]. This leads
to destructive interference at the place where the singularity in the classical
theory occurs. Other issues, such as the attempt to give a microscopic deriva-
tion of the Bekenstein–Hawking entropy (see the contribution by C. Kiefer
to this book), have been mainly addressed in loop quantum gravity. A final,
clear-cut, derivation remains, however, elusive.
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11. Hojman, S.A., Kuchař, K., and Teitelboim, C. (1976). Geometrodynamics re-
gained. Annals of Physics, 96, 88–135. 140

12. Horowitz, G. (1991). Topology change in classical and quantum gravity. Clas-
sical and Quantum Gravity, 8, 587–602. 143
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1 Quantum Einstein Gravity

The assumption that Einstein’s classical theory of gravity can be quantised
non-perturbatively is at the root of a wide variety of approaches to quantum
gravity. The assumption constitutes the basis of several discrete methods [1],
such as dynamical triangulations and Regge calculus, but it also implicitly
underlies the older Euclidean path integral approach [2, 3] and the somewhat
more indirect arguments which suggest that there may exist a non-trivial fixed
point of the renormalisation group [4–6]. Finally, it is the key assumption
which underlies loop and spin foam quantum gravity. Although the assump-
tion is certainly far-reaching, there is to date no proof that Einstein gravity
cannot be quantised non-perturbatively, either along the lines of one of the
programs listed above or perhaps in an entirely different way.

In contrast to string theory, which posits that the Einstein–Hilbert action
is only an effective low-energy approximation to some other, more fundamen-
tal, underlying theory, loop and spin foam gravity takes Einstein’s theory in
four space-time dimensions as the basic starting point, either with the con-
ventional or with a (constrained) ‘BF-type’ formulation.1 These approaches
are background independent in the sense that they do not presuppose the ex-
istence of a given background metric. In comparison to the older geometrody-
namics approach (which is also formally background independent) they make
use of many new conceptual and technical ingredients. A key role is played
by the reformulation of gravity in terms of connections and holonomies. A re-
lated feature is the use of spin networks in three (for canonical formulations)

1 In the remainder, we will often follow established (though perhaps misleading)
custom and summarily refer to this framework of ideas simply as ‘Loop Quantum
Gravity’, or LQG for short.
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and four (for spin foams) dimensions. These, in turn, require other math-
ematical ingredients, such as non-separable (‘polymer’) Hilbert spaces and
representations of operators which are not weakly continuous. Undoubtedly,
novel concepts and ingredients such as these will be necessary in order to
circumvent the problems of perturbatively quantised gravity (that novel in-
gredients are necessary is, in any case, not just the point of view of LQG but
also of most other approaches to quantum gravity). Nevertheless, it is impor-
tant not to lose track of the physical questions that one is trying to answer.

Evidently, in view of our continuing ignorance about the ‘true theory’ of
quantum gravity, the best strategy is surely to explore all possible avenues.
LQG, just like the older geometrodynamics approach [7], addresses several as-
pects of the problem that are currently outside the main focus of string theory,
in particular the question of background independence and the quantisation
of geometry. Whereas there is a rather direct link between (perturbative)
string theory and classical space-time concepts, and string theory can there-
fore rely on familiar notions and concepts, such as the notion of a particle
and the S-matrix, the task is harder for LQG, as it must face up right away
to the question of what an observable quantity is in the absence of a proper
semi-classical space-time with fixed asymptotics.

The present text, which is based in part on the companion review [8], is
intended as a brief introductory and critical survey of loop and spin foam
quantum gravity,2 with special attention to some of the questions that are
frequently asked by non-experts, but not always adequately emphasised (for
our taste, at least) in the pertinent literature. For the canonical formulation
of LQG, these concern in particular the definition and implementation of
the Hamiltonian (scalar) constraint and its lack of uniqueness. An important
question (which we will not even touch on here) concerns the consistent incor-
poration of matter couplings, and especially the question as to whether the
consistent quantisation of gravity imposes any kind of restrictions on them. Es-
tablishing the existence of a semi-classical limit, in which classical space-time
and the Einstein field equations are supposed to emerge, is widely regarded
as the main open problem of the LQG approach. This is also a prerequisite
for understanding the ultimate fate of the non-renormalisable UV divergences
that arise in the conventional perturbative treatment. Finally, in any canoni-
cal approach there is the question whether one has succeeded in achieving (a
quantum version of) full space-time covariance, rather than merely covariance
under diffeomorphisms of the three-dimensional slices. In [8] we have argued
(against a widely held view in the LQG community) that for this, it is not
enough to check the closure of two Hamiltonian constraints on diffeomorphism
invariant states, but that it is rather the off-shell closure of the constraint al-
gebra that should be made the crucial requirement in establishing quantum
space-time covariance.

2 Whereas [8] is focused on the ‘orthodox’ approach to loop quantum gravity, to
wit the Hamiltonian framework.
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Many of these questions have counterparts in the spin foam approach,
which can be viewed as a ‘space-time covariant version’ of LQG, and at the
same time as a modern variant of earlier attempts to define a discretised path
integral in quantum gravity. For instance, the existence of a semi-classical limit
is related to the question whether the Einstein–Hilbert action can be shown to
emerge in the infrared (long distance) limit, as is the case in (2+1) gravity in
the Ponzano–Regge formulation, cf. (38). Regarding the non-renormalisable
UV divergences of perturbative quantum gravity, many spin foam practition-
ers seem to hold the view that there is no need to worry about short distance
singularities and the like because the divergences are simply ‘not there’ in
spin foam models, due to the existence of an intrinsic cutoff at the Planck
scale. However, the same statement applies to any regulated quantum field
theory (such as lattice gauge theory) before the regulator is removed, and on
the basis of this more traditional understanding, one would therefore expect
the ‘correct’ theory to require some kind of refinement (continuum) limit,3

or a sum ‘over all spin foams’ (corresponding to the ‘sum over all metrics’
in a formal path integral). If one accepts this point of view, a key question
is whether it is possible to obtain results which do not depend on the spe-
cific way in which the discretisation and the continuum limit are performed
(this is also a main question in other discrete approaches which work with
reparametrisation invariant quantities, such as in Regge calculus). On the
other hand, the very need to take such a limit is often called into question
by LQG proponents, who claim that the discrete (regulated) model correctly
describes physics at the Planck scale. However, it is then difficult to see (and,
for gravity in (3+1) dimensions, has not been demonstrated all the way in a
single example) how a classical theory with all the requisite properties, and
in particular full space-time covariance, can emerge at large distances. Fur-
thermore, without considering such limits, and in the absence of some other
unifying principle, one may well remain stuck with a multitude of possible
models, whose lack of uniqueness simply mirrors the lack of uniqueness that
comes with the need to fix infinitely many coupling parameters in the con-
ventional perturbative approach to quantum gravity.

Obviously, a brief introductory text such as this cannot do justice to the
numerous recent developments in a very active field of current research. For
this reason, we would like to conclude this introduction by referring readers
to several ‘inside’ reviews for recent advances and alternative points of view,
namely [9–11] for the canonical formulation, [12–14] for spin foams, and [15]
for both. A very similar point of view to ours has been put forward in [16, 17].4

Readers are also invited to have a look at [18] for an update on the very latest
developments in the subject.
3 Unless quantum gravity is ultimately a topological theory, in which case the

sequence of refinements becomes stationary. Such speculations have also been
entertained in the context of string and M theory.

4 However, [16, 17] only addresses the so-called ‘m-ambiguity’, whereas we will
argue that there are infinitely many other parameters which a microscopic theory
of quantum gravity must fix.
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2 The Kinematical Hilbert Space of LQG

There is a general expectation (not only in the LQG community) that at the
very shortest distances, the smooth geometry of Einstein’s theory will be re-
placed by some quantum space or space-time, and hence the continuum will
be replaced by some ‘discretuum’. Canonical LQG does not do away with
conventional spacetime concepts entirely, in that it still relies on a spatial
continuum Σ as its ‘substrate’, on which holonomies and spin networks live
(or ‘float’) – of course, with the idea of eventually ‘forgetting about it’ by
considering abstract spin networks and only the combinatorial relations be-
tween them. On this substrate, it takes as the classical phase space variables
the holonomies of the Ashtekar connection,

he[A] = P exp
∫

e

Aamτadxm , with Aam := − 1
2ε
abcωmbc + γ Ka

m . (1)

Here, τa are the standard generators of SU(2) (Pauli matrices), but one can
also replace the basic representation by a representation of arbitrary spin,
denoted by ρj(he[A]). The Ashtekar connection A is thus a particular lin-
ear combination of the spin connection ωmbc and the extrinsic curvature Ka

m

which appear in a standard (3+1) decomposition. The parameter γ is the so-
called ‘Barbero-Immirzi parameter’. The variable conjugate to the Ashtekar
connection turns out to be the inverse densitised dreibein Ẽa

m := e ea
m. Us-

ing this conjugate variable, one can find the objects which are conjugate to
the holonomies. These are given by integrals of the associated two-form over
two-dimensional surfaces S embedded in Σ,

FS [Ẽ, f ] :=
∫

S

εmnpẼ
m
a fa dxn ∧ dxp , (2)

where fa(x) is a test function. This flux vector is indeed conjugate to the
holonomy in the sense described in Fig. 1: if the edge associated to the holon-
omy intersects the surface associated to the flux, the Poisson bracket between
the two is non-zero,

{

(he[A])αβ , FS [Ẽ, f ]
}

= ± γ fa(P )
(

he1 [A] τa he2 [A]
)

αβ
, (3)

where e = e1 ∪ e2 and the sign depends on the relative orientation of the edge
and the two-surface. This Poisson structure is the one which gets promoted
to a commutator algebra in the quantum theory.

Instead of building a Hilbert space as the space of functions over configura-
tions of the Ashtekar connection, i.e. instead of constructing wave-functionals
Ψ [Am(x)], LQG uses a Hilbert space of wave functionals which “probe” the
geometry only on one-dimensional submanifolds, the so-called spin networks .
The latter are (not necessarily connected) graphs Γ embedded in Σ consisting
of finitely many edges (links). The wave functionals are functionals over the
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e1

e2

Fig. 1. LQG employs holonomies and fluxes as elementary conjugate variables.
When the edge of the holonomy and the two-surface element of the flux intersect, the
canonical Poisson bracket of the associated operators is non-vanishing, and inserts
a τ -matrix at the point of intersection, cf. (3)

space of holonomies. In order to make them C-valued, the SU(2) indices of the
holonomies have to be contracted using invariant tensors (i.e. Clebsch–Gordan
coefficients). The wave function associated to the spin network in Fig. 2 is,
for instance, given by

Ψ [fig.2] =
(

ρj1(he1 [A])
)

α1β1

(

ρj2(he2 [A])
)

α2β2

×
(

ρj3(he3 [A])
)

α3β3

Cj1j2j3
β1β2β3

. . . , (4)

where dots represent the remainder of the graph. The spin labels j1, . . . must
obey the standard rules for the vector addition of angular momenta, but
otherwise can be chosen arbitrarily. The spin network wave functions Ψ are
thus labelled by Γ (the spin network graph), by the spins {j} attached to the
edges, and the intertwiners {C} associated to the vertices.

At this point, we have merely defined a space of wave functions in terms
of rather unusual variables, and it now remains to define a proper Hilbert
space structure on them. The discrete kinematical structure which LQG im-
poses does, accordingly, not come from the description in terms of holonomies
and fluxes. After all, this very language can also be used to describe ordi-
nary Yang–Mills theory. The discrete structure which LQG imposes is also
entirely different from the discreteness of a lattice or naive discretisation of
space (i.e. of a finite or countable set). Namely, it arises by ‘polymerising’ the
continuum via an unusual scalar product . For any two spin network states,
one defines this scalar product to be

〈

ΨΓ,{j},{C}
∣

∣Ψ ′
Γ ′,{j′},{C′}

〉

=

⎧

⎪

⎨

⎪

⎩

0 if Γ �= Γ ′ ,
∫

∏

ei∈Γ
dhei ψ̄Γ,{j},{C} ψ′

Γ ′,{j′},{C′} if Γ = Γ ′ ,
(5)
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Fig. 2. A simple spin network, embedded in the spatial hypersurface Σ. The hyper-
surface is only present in order to provide coordinates which label the positions of
the vertices and edges. Spin network wave functions only probe the geometry along
the one-dimensional edges and are insensitive to the geometry elsewhere on Σ

where the integrals
∫

dhe are to be performed with the SU(2) Haar measure.
The spin network wave functions ψ depend on the Ashtekar connection only
through the holonomies. The kinematical Hilbert space Hkin is then defined as
the completion of the space of spin network wave functions w.r.t. this scalar
product (5). The topology induced by the latter is similar to the discrete
topology (‘pulverisation’) of the real line with countable unions of points as
the open sets. Because the only notion of ‘closeness’ between two points in
this topology is whether or not they are coincident, whence any function is
continuous in this topology, this raises the question as to how one can recover
conventional notions of continuity in this scheme.

The very special choice of the scalar product (5) leads to representations of
operators which need not be weakly continuous: this means that expectation
values of operators depending on some parameter do not vary continuously as
these parameters are varied. Consequently, the Hilbert space does not admit
a countable basis, hence is non-separable, because the set of all spin network
graphs in Σ is uncountable, and non-coincident spin networks are orthogonal
w.r.t. (5). Therefore, any operation (such as a diffeomorphism) which moves
around graphs continuously corresponds to an uncountable sequence of mutu-
ally orthogonal states in Hkin. That is, no matter how ‘small’ the deformation
of the graph in Σ, the associated elements of Hkin always remain a finite
distance apart, and consequently, the continuous motion in ‘real space’ gets
mapped to a highly discontinuous one in Hkin. Although unusual, and per-
haps counter-intuitive, as they are, these properties constitute a cornerstone
for the hopes that LQG can overcome the seemingly unsurmountable prob-
lems of conventional geometrodynamics: if the representations used in LQG
were equivalent to the ones of geometrodynamics, there would be no reason
to expect LQG not to end up in the same quandary.
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Because the space of quantum states used in LQG is very different from
the one used in Fock space quantisation, it becomes non-trivial to see how
semi-classical ‘coherent’ states can be constructed, and how a smooth classi-
cal space-time might emerge. In simple toy examples, such as the harmonic
oscillator, it has been shown that the LQG Hilbert space indeed admits states
(complicated linear superpositions) whose properties are close to those of the
usual Fock space coherent states [19]. In full (3+1)-dimensional LQG, the
classical limit is, however, far from understood (so far only kinematical co-
herent states are known [20–25], i.e. states which do not satisfy the quantum
constraints). In particular, it is not known how to describe or approximate
classical space-times in this framework that ‘look’ like, say, Minkowski space,
or how to properly derive the classical Einstein equations and their quan-
tum corrections. A proper understanding of the semi-classical limit is also
indispensable to clarify the connection (or lack thereof) between conventional
perturbation theory in terms of Feynman diagrams and the non-perturbative
quantisation proposed by LQG.

However, the truly relevant question here concerns the structure (and defi-
nition!) of physical space and time. This, and not the kinematical ‘discretuum’
on which holonomies and spin networks ‘float’, is the arena where one should
try to recover familiar and well-established concepts like the Wilsonian renor-
malisation group, with its continuous ‘flows’. Because the measurement of
lengths and distances ultimately requires an operational definition in terms
of appropriate matter fields and states obeying the physical state constraints,
‘dynamical’ discreteness is expected to manifest itself in the spectra of the rel-
evant physical observables. Therefore, let us now turn to a discussion of the
spectra of three important operators and to the discussion of physical states.

3 Area, Volume, and the Hamiltonian

In the current setup of LQG, an important role is played by two relatively
simple operators: the ‘area operator’ measuring the area of a two-dimensional
surface S ⊂ Σ and the ‘volume operator’ measuring the volume of a three-
dimensional subset V ⊂ Σ. The latter enters the definition of the Hamiltonian
constraint in an essential way. Nevertheless, it must be emphasised that the
area and volume operators are not observables in the Dirac sense, as they do
not commute with the Hamiltonian. To construct physical operators corre-
sponding to area and volume is more difficult and would require the inclusion
of matter (in the form of ‘measuring rod fields’).

The area operator is most easily expressed as

AS [g] =
∫

S

√
dF a · dF a , with dFa := εmnpẼ

m
a dxn ∧ dxp (6)

(the area element is here expressed in terms of the new ‘flux variables’ Ẽm
a , but

is equal to the standard expression dFa := εabcem
ben

cdxm ∧ dxn). The next
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step is to rewrite this area element in terms of the spin network variables,
in particular the momentum Ẽa

m conjugate to the Ashtekar connection. In
order to do so, we subdivide the surface into infinitesimally small surfaces SI
as in Fig. 3. Next, one approximates the area by a Riemann sum (which, of
course, converges for well-behaved surfaces S), using

∫

SI

√
dF a · dF a ≈

√

F a
SI

[Ẽ]F a
SI

[Ẽ] . (7)

This turns the operator into the expression

AS [Ẽa
m] = lim

N→∞

N
∑

I=1

√

F a
SI

[Ẽ]F a
SI

[Ẽ] . (8)

If one applies the operator (8) to a wave function associated with a fixed graph
Γ and refines it in such a way that each elementary surface SI is pierced by
only one edge of the network, one obtains, making use of (3) twice,

ÂSΨ = 8πl2pγ
#edges
∑

p=1

√

jp(jp + 1)Ψ . (9)

These spin network states are thus eigenstates of the area operator. The situa-
tion becomes considerably more complicated for wave functions which contain
a spin network vertex which lies in the surface S; in this case the area operator
does not necessarily act diagonally anymore (see Fig. 4). Expression (9) lies
at the core of the statement that areas are quantised in LQG.

The construction of the volume operator follows similar logic, although it
is substantially more involved. One starts with the classical expression for the
volume of a three-dimensional region Ω ⊂ Σ,

V (Ω) =
∫

Ω

d3x

√

∣

∣

∣

∣

1
3!

εabcεmnpẼa
mẼb

nẼ
c
p

∣

∣

∣

∣

. (10)

Fig. 3. The computation of the spectrum of the area operator involves the division
of the surface into cells, such that at most one edge of the spin network intersects
each given cell
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Fig. 4. The action of the area operator on a node with intertwiner Cj1j2k
α1α2βC

j3j4k
α3α4β.

Whether or not this action is diagonal depends on the orientation of the surface
associated to the area operator. In the figure on the (left), the location of the
edges with respect to the surface is such that the invariance of the Clebsch–Gordan
coefficients can be used to evaluate the action of the area operator. The result can
be written in terms of a ‘virtual’ edge. In the figure on the (right), however, this is
not the case, a recoupling relation is needed, and the spin network state is not an
eigenstate of the corresponding area operator

Just as with the area operator, one partitions Ω into small cells Ω = ∪IΩI ,
so that the integral can be replaced with a Riemann sum. In order to express
the volume element in terms of the canonical quantities introduced before,
one then again approximates the area elements dF a by the small but finite
area operators F a

S [Ẽ], such that the volume is obtained as the limit of a
Riemann sum

V (Ω) = lim
N→∞

N
∑

I=1

√

∣

∣

∣

∣

1
3!

εabcF a
S1

I
[Ẽ]F b

S2
I
[Ẽ]F c

S3
I
[Ẽ]

∣

∣

∣

∣

. (11)

The main problem is now to choose appropriate surfaces S1,2,3 in each cell.
This should be done in such a way that the r.h.s. of (11) reproduces the correct
classical value. For instance, one can choose a point inside each cube ΩI , then
connect these points by lines and ‘fill in’ the faces. In each cell ΩI one then
has three lines labelled by a = 1, 2, 3; the surface SaI is then the one that is
traversed by the a-th line. With this choice it can be shown that the result is
insensitive to small ‘wigglings’ of the surfaces, hence independent of the shape
of SaI , and the above expression converges to the desired result. See [26, 27]
for some recent results on the spectrum of the volume operator.

The key problem in canonical gravity is the definition and implementa-
tion of the Hamiltonian (scalar) constraint operator, and the verification that
this operator possesses all the requisite properties. The latter include (quan-
tum) space-time covariance as well as the existence of a proper semi-classical
limit, in which the classical Einstein equations are supposed to emerge. It is
this operator which replaces the Hamiltonian evolution operator of ordinary
quantum mechanics, and encodes all the important dynamical information
of the theory (whereas the Gauss and diffeomorphism constraints are merely
‘kinematical’). More specifically, together with the kinematical constraints,
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it defines the physical states of the theory, and thereby the physical Hilbert
space Hphys (which may be separable [28], even if Hkin is not).

To motivate the form of the quantum Hamiltonian one starts with the
classical expression, written in loop variables. To this aim one rewrites the
Hamiltonian in terms of Ashtekar variables, with the result

H [N ] =
∫

Σ

d3xN
Ẽm
a Ẽn

b
√

det Ẽ

(

εabcFmnc − 1
2
(1 + γ2)K[m

aKn]
b
)

. (12)

For the special values γ = ±i, the last term drops out, and the Hamilto-
nian simplifies considerably. This was indeed the value originally proposed by
Ashtekar, and it would also appear to be the natural one required by local
Lorentz invariance (as the Ashtekar variable is, in this case, just the pullback
of the four-dimensional spin connection). However, imaginary γ obviously im-
plies that the phase space of general relativity in terms of these variables
would have to be complexified, such that the original phase space could be
recovered only after imposing a reality constraint. In order to avoid the diffi-
culties related to quantising this reality constraint, γ is now usually taken to
be real. With this choice, it becomes much more involved to rewrite (12) in
terms of loop and flux variables.

4 Implementation of the Constraints

In canonical gravity, the simplest constraint is the Gauss constraint. In the
setting of LQG, it simply requires that the SU(2) representation indices en-
tering a given vertex of a spin network enter in an SU(2) invariant man-
ner. More complicated are the diffeomorphism and Hamiltonian constraint.
In LQG these are implemented in two entirely different ways. Moreover, the
implementation of the Hamiltonian constraint is not completely independent,
as its very definition relies on the existence of a subspace of diffeomorphism
invariant states.

Let us start with the diffeomorphism constraint. Unlike in geometrody-
namics, one cannot immediately write down formal states which are mani-
festly diffeomorphism invariant, because the spin network functions are not
supported on all of Σ, but only on one-dimensional links, which ‘move around’
under the action of a diffeomorphism. A formally diffeomorphism invariant
state is obtained by ‘averaging’ over the diffeomorphism group, and more
specifically by considering the formal sum

η(Ψ)[A] :=
∑

φ∈Diff(Σ|Γ )

ΨΓ [A ◦ φ] . (13)

Here Diff(Σ|Γ ) is obtained by dividing out the diffeomorphisms leaving in-
variant the graph Γ . Although this is a continuous sum which might seem to
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be ill-defined, it can be given a mathematically precise meaning because the
unusual scalar product (5) ensures that the inner product between a state and
a diffeomorphism-averaged state,

〈η(ΨΓ ′ ) |ΨΓ 〉 =
∑

φ∈Diff(Σ|Γ ′)

〈φ∗ ◦ ΨΓ ′ |ΨΓ 〉 , (14)

consists at most of a finite number of terms. It is this fact which ensures
that 〈η(ΨΓ )| is indeed well defined as an element of the space dual to the
space of spin networks (which is dense in Hkin). In other words, although
η(Ψ) is certainly outside of Hkin, it does make sense as a distribution. On the
space of diffeomorphism averaged spin network states (regarded as a subspace
of a distribution space) one can now again introduce a Hilbert space structure
‘by dividing out’ spatial diffeomorphisms, namely

〈〈η(Ψ)|η(Ψ ′)〉〉 := 〈η(Ψ)|Ψ ′〉 . (15)

The completion by means of this scalar product defines the space Hdiff; but
note that Hdiff is not a subspace of Hkin!

As mentioned above, however, it is the Hamiltonian constraint which plays
the key role in canonical gravity, as it this operator which encodes the dy-
namics. Implementing this constraint on Hdiff or some other space is fraught
with numerous choices and ambiguities, inherent in the construction of the
quantum Hamiltonian as well as the extraordinary complexity of the resulting
expression for the constraint operator [29]. The number of ambiguities can be
reduced by invoking independence of the spatial background [10], and indeed,
without making such choices, one would not even obtain sensible expressions.
In other words, the formalism is partly ‘on-shell’ in that the very existence of
the (unregulated) Hamiltonian constraint operator depends very delicately on
its ‘diffeomorphism covariance’, and the choice of a proper ‘habitat’, on which
it is supposed to act in a well-defined manner. A further source of ambiguities,
which, for all we know, has not been considered in the literature so far, con-
sists in possible �-dependent ‘higher order’ modifications of the Hamiltonian,
which might still be compatible with all consistency requirements of LQG.

In order to write the constraint in terms of only holonomies and fluxes, one
has to eliminate the inverse square root Ẽ−1/2 in (12) as well as the extrinsic
curvature factors. This can be done through a number of tricks found by
Thiemann [30]. The vielbein determinant is eliminated using

εmnpε
abcẼ−1/2Ẽb

nẼc
p =

1
4γ

{

Am
a(x), V

}

. (16)

where V ≡ V (Σ) is the total volume, cf. (10). The extrinsic curvature is
eliminated by writing it as

Km
a(x) =

1
γ

{

Am
a(x) , K̄

}

where K̄ :=
∫

Σ

d3xKm
aẼa

m , (17)
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and then eliminating the integrand of K̄ using

K̄(x) =
1

γ3/2

{ Ẽa
mẼb

n

√

Ẽ
εabcFmnc(x), V

}

=
1

4γ5/2
εmnp

{

{Ama , V }Fnpa , V
}

,

(18)

i.e. writing it as a nested Poisson bracket. Inserting these tricks into the Hamil-
tonian constraint, one replaces (12) with the expression

H [N ] =
∫

Σ

d3xNεmnpTr
(

Fmn{Ap, V }

− 1
2
(1 + γ2){Am, K̄}{An, K̄}{Ap, V }

)

, (19)

with K̄ understood to be eliminated using (18). This expression, which now
contains only the connection A and the volume V , is the starting point for
the construction of the quantum constraint operator.

In order to quantise the classical Hamiltonian (19), one next elevates all
classical objects to quantum operators as described in the foregoing sections,
and replaces the Poisson brackets in (19) by quantum commutators. The re-
sulting regulated Hamiltonian then reduces to a sum over the vertices vα of
the spin network with lapses N(vα)

Ĥ [N, ε] =
∑

α

N(vα) εmnp

× Tr
{

(

h∂Pmn(ε) − h−1
∂Pmn(ε)

)

h−1
p

[

hp, V̂
]

− 1
2 (1+γ2)h−1

m

[

hm, K̄
]

h−1
n

[

hn, K̄
]

h−1
p

[

hp, V̂
]

}

,

(20)

where ∂Pmn(ε) is a small loop attached to the vertex vα that must eventu-
ally be shrunk to zero. In writing the above expression, we have furthermore
assumed a specific (but, at this point, not specially preferred) ordering of the
operators.

Working out the action of (20) on a given spin network wave function is
rather non-trivial, and we are not aware of any concrete calculations in this
regard, other than for very simple special configurations (see, e.g., [31]); to
get an idea of the complications, readers may have a look at a recent analysis
of the volume operator and its spectrum in [32]. In particular, the available
calculations focus almost exclusively on the action of the first term in (20),
whereas the second term (consisting of multiply nested commutators, cf. (18))
is usually not discussed in any detail. At any rate, this calculation involves
a number of choices in order to fix various ambiguities, such as the ordering
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ambiguities in both terms in (20). An essential ingredient is the action of the
operator h∂Pmn(ε)−h−1

∂Pmn(ε), which is responsible for the addition of a plaque-
tte to the spin network. The way in which this works is depicted (schemat-
ically) in Fig. 5. The plaquette is added in a certain SU(2) representation,
corresponding to the representation of the trace in (20). This representation
label j is arbitrary, and constitutes a quantisation ambiguity (often called
‘m-ambiguity’).

Having defined the action of the regulated Hamiltonian, the task is not
finished, however, because one must still take the limit ε → 0, in which the
attached loops are shrunk to zero. As it turns out, this limit cannot be taken
straightforwardly: due to the scalar product (5) and the non-separability of
Hkin the limiting procedure runs through a sequence of mutually orthogo-
nal states, and therefore does not converge in Hkin. For this reason, LQG
must resort to a weaker notion of limit, either by defining the limit as a
weak limit on a (subspace of the) algebraic dual of a dense subspace of
Hkin [11, 33] or by taking the limit in the weak ∗ operator topology [10].
In the first case, the relevant space (sometimes referred to as the ‘habitat’)
is a distribution space which contains the space Hdiff of formally diffeomor-
phism invariant states as a subspace, but its precise nature and definition
is still a matter of debate. In the second case, the limit is implemented (in
a very weak sense) on the original kinematical Hilbert space Hkin, but that
space will not contain any diffeomorphism invariant states other than the
‘vacuum’ Ψ = 1. The question of the proper ‘habitat’ on which to implement
the action of the Hamiltonian constraint is thus by no means conclusively
settled.

From a more general point of view, it should be noted that the action
of the Hamiltonian constraint is always ‘ultralocal’: all changes to the spin
network are made in an ε → 0 neighbourhood of a given vertex, while the
spin network graph is kept fixed [34–36]. Pictorially speaking, the only action
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3

2

3

1

j

j

j

j

j

j

j

k

k

Fig. 5. Schematic depiction of the action of the Hamiltonian constraint on a vertex
of a spin network wave function. Two new vertices are introduced, and the original
vertex is modified. Note that in order for this to be true, particular choices have
been made in the quantisation prescription
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H

Fig. 6. The action of the Hamiltonian constraint is ‘ultra-local’, in the sense that
it acts only in a neighbourhood of ‘size’ ε around a spin network vertex

of the (regulated) Hamiltonian is to dress up the vertices with ‘spiderwebs’, see
Fig. 6. More specifically, it has been argued [33] that the Hamiltonian acts at
a particular vertex only by changing the intertwiners at that vertex. This is in
stark contrast to what happens in lattice field theories. There the action of the
Hamiltonian always links two different existing nodes, the plaquettes are by
construction always spanned between existing nodes, and the continuum limit
involves the lattice as a whole, not only certain sub-plaquettes that shrink to
a vertex. This is also what one would expect on physical grounds for a theory
with non-trivial dynamics.

The attitude often expressed with regard to the ambiguities in the con-
struction of the Hamiltonian is that they correspond to different physics,
and therefore the choice of the correct Hamiltonian is ultimately a matter
of physics (experiment?), and not mathematics. However, it appears unlikely
to us that Nature will allow such a great degree of arbitrariness at its most
fundamental level: in fact, our main point here is that the infinitely many am-
biguities which killed perturbative quantum gravity are also a problem that
other (to wit, non-perturbative) approaches must address and solve.5

5 Quantum Space-Time Covariance?

Space-time covariance is a central property of Einstein’s theory. Although
the Hamiltonian formulation is not manifestly covariant, full covariance is
still present in the classical theory, albeit in a hidden form, via the classical
(Poisson or Dirac) algebra of constraints acting on phase space. However, this
is not necessarily so for the quantised theory. As we explained, LQG treats the
diffeomorphism constraint and the Hamiltonian constraint in a very different
manner. Why and how then should one expect such a theory to recover full
space-time (as opposed to purely spatial) covariance? The crucial issue here

5 The abundance of ‘consistent’ Hamiltonians and spin foam models (see below)
is sometimes compared to the vacuum degeneracy problem of string theory, but
the latter concerns different solutions of the same theory, as there is no dispute
as to what (perturbative) string theory is. However, the concomitant lack of
predictivity is obviously a problem for both approaches.
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is clearly what LQG has to say about the quantum algebra of constraints.
Unfortunately, to the best of our knowledge, the ‘off-shell’ calculation of the
commutator of two Hamiltonian constraints in LQG – with an explicit op-
eratorial expression as the final result – has never been fully carried out.
Instead, a survey of the possible terms arising in this computation has led to
the conclusion that the commutator vanishes on a certain restricted ‘habitat’
of states [33, 37, 38], and that therefore the LQG constraint algebra closes
without anomalies. By contrast, we have argued in [8] that this ‘on-shell clo-
sure’ is not sufficient for a full proof of quantum space-time covariance, but
that a proper theory of quantum gravity requires a constraint algebra that
closes ‘off shell’, i.e. without prior imposition of a subset of the constraints.
The fallacies that may ensue if one does not insist on off-shell closure can be
illustrated with simple examples. In our opinion, this requirement may well
provide the acid test on which any proposed theory of canonical quantum
gravity will stand or fail.

While there is general agreement as to what one means when one speaks
of ‘closure of the constraint algebra’ in classical gravity (or any other classical
constrained system [39]), this notion is more subtle in the quantised theory.6

Let us therefore clarify first the various notions of closure that can arise:
we see at least three different possibilities. The strongest notion is ‘off-shell
closure’ (or ‘strong closure’), where one seeks to calculate the commutator of
two Hamiltonians

[

Ĥ [N1] , Ĥ [N2]
]

= Ô(N1;N2) . (21)

Here we assume that the quantum Hamiltonian constraint operator,

Ĥ [N ] := lim
ε→0

Ĥ [N, ε] , (22)

has been rigorously defined as a suitably weak limit, and without further re-
strictions on the states on which (21) is supposed to hold. In writing the above
equations, we have thus been (and will be) cavalier about habitat questions
and the precise definition of the Hamiltonian; see, however, [8, 33, 38] for
further details and critical comments.

Unfortunately, it appears that the goal of determining Ô(N1;N2) as a
bona fide ‘off-shell’ operator on a suitable ‘habitat’ of states, and prior to the
imposition of any constraints, is unattainable within the current framework
of LQG. For this reason, LQG must resort to weaker notions of closure, by
making partial use of the constraints. More specifically, (21) can be relaxed
substantially by demanding only

[

Ĥ [N1], Ĥ [N2]
] |X 〉 = 0 , (23)

but still with the unregulated Hamiltonian constraint Ĥ[N ]. This ‘weak clo-
sure’ should hold for all states |X 〉 in a restricted habitat of states that are
6 For reasons of space, we here restrict attention to the bracket between two Hamil-

tonian constraints, because the remainder of the algebra involving the kinematical
constraints is relatively straightforward to implement.
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‘naturally’ expected to be annihilated by the r.h.s. of (21), and that are sub-
ject to the further requirement that the Hamiltonian can be applied twice
without leaving the ‘habitat’. The latter condition is, for instance, met by the
‘vertex smooth’ states of [33]. As shown in [33, 38], the commutator of two
Hamiltonians indeed vanishes on this ‘habitat’, and one is therefore led to
conclude that the full constraint algebra closes ‘without anomalies’.

The same conclusion was already arrived at in an earlier computation of
the constraint algebra in [30, 37], which was done from a different perspective
(no ‘habitats’), and makes essential use of the space of diffeomorphism invari-
ant states Hdiff, the ‘natural’ kernel of the r.h.s. of (21). Here the idea is to
verify that [30, 37]

lim
ε1→0
ε2→0

〈X | [Ĥ [N1, ε1], Ĥ [N2, ε2]
]

Ψ〉 = 0 , (24)

for all |X 〉 ∈ Hdiff, and for all |Ψ〉 in the space of finite linear combinations
of spin network states. As for the Hamiltonian itself, letting ε1,2 → 0 in this
expression produces an uncountable sequence of mutually orthogonal states
w.r.t. the scalar product (5). Consequently, the limit again does not exist in
the usual sense, but only as a weak ∗ limit. The ‘diffeomorphism covariance’
of the Hamiltonian is essential for this result. Let us stress that (23) and
(24) are by no means the same: in (23) one uses the unregulated Hamiltonian
(where the limit ε → 0 has already been taken), whereas the calculation of
the commutator in (24) takes place inside Hkin, and the limit ε → 0 is taken
only after computing the commutator of two regulated Hamiltonians. These
two operations (taking the limit ε→ 0, and calculating the commutator) need
not commute. Because with both (23) and (24) one forgoes the aim of finding
an operatorial expression for the commutator

[

Ĥ [N1], Ĥ[N2]
]

, making partial
use of the constraints, we say (in a partly supergravity inspired terminology)
that the algebra closes ‘on-shell’.

Although on-shell closure may perhaps look like a sufficient condition on
the quantum Hamiltonian constraint, it is easy to see, at the level of sim-
ple examples, that this is not true. Consider, for instance, the Hamiltonian
constraint of bosonic string theory, and consider modifying it by multiplying
it with an operator which commutes with all Virasoro generators. There are
many such operators in string theory, for instance the mass-squared operator
(minus an arbitrary integer). In this way, we arrive at a realisation of the con-
straint operators which is very similar to the one used in LQG: the algebra of
spatial diffeomorphisms is realised via a (projective) unitary representation,
and the Hamiltonian constraint transforms covariantly (the extra factor does
not matter, because it commutes with all constraints). In a first step, one can
restrict attention to the subspace of states annihilated by the diffeomorphism
constraint, the analogue of the space Hdiff. Imposing now the new Hamilto-
nian constraint (the one multiplied with the Casimir) on this subspace would
produce a ‘non-standard’ spectrum by allowing extra diffeomorphism invari-
ant states of a certain prescribed mass. The algebra would also still close
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on-shell, i.e. on the ‘habitat’ of states annihilated by the diffeomorphism con-
straint. The point here is not so much whether this new spectrum is ‘right’
or ‘wrong’, but rather that in allowing such modifications which are compat-
ible with on-shell closure of the constraint algebra, we introduce an infinite
ambiguity and arbitrariness into the definition of the physical states. In other
words, if we only demand on-shell closure as in LQG, there is no way of telling
whether or not the vanishing of a commutator is merely accidental, i.e. not
really due to the diffeomorphism invariance of the state, but caused by some
other circumstance.

By weakening the requirements on the constraint algebra and by no longer
insisting on off-shell closure, crucial information gets lost. This loss of infor-
mation is reflected in the ambiguities inherent in the construction of the LQG
Hamiltonian. It is quite possible that the LQG Hamiltonian admits many fur-
ther modifications on top of the ones we have already discussed, for which the
commutator continues to vanish on a suitably restricted habitat of states –
in which case neither (23) nor (24) would amount to much of a consistency
test.

6 Canonical Gravity and Spin Foams

Attempts to overcome the difficulties with the Hamiltonian constraint have
led to another development, spin foam models [40–42]. These were originally
proposed as space-time versions of spin networks, to wit, evolutions of spin
networks in ‘time’, but have since developed into a class of models of their
own, disconnected from the canonical formalism. Mathematically, spin foam
models represent a generalisation of spin networks, in the sense that group the-
oretical objects (holonomies, representations, intertwiners, etc.) are attached
not only to vertices and edges (links), but also to higher-dimensional faces in
a simplicial decomposition of space-time.

The relation between spin foam models and the canonical formalism is
based on a few general features of the action of the Hamiltonian constraint
operator on a spin network (for a review on the connection, see [43]). As
we have discussed above, the Hamiltonian constraint acts, schematically, by
adding a small plaquette close to an existing vertex of the spin network (as
in Fig. 5). In terms of a space-time picture, we see that the edges of the spin
network sweep out surfaces, and the Hamiltonian constraint generates new
surfaces, as in Fig. 7; but note that this graphical representation does not
capture the details of how the action of the Hamiltonian affects the intertwin-
ers at the vertices. Instead of associating spin labels to the edges of the spin
network, one now associates the spin labels to the surfaces, in such a way that
the label of the surface is determined by the label of the edge which lies in
either the initial or final surface.

In analogy with proper-time transition amplitudes for a relativistic parti-
cle, it is tempting to define the transition amplitude between an initial spin
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j
j

Fig. 7. From spin networks to spin foams, in (2+1) dimensions. The Hamiltonian
constraint has created one new edge and two new vertices. The associated surface
inherits the label j of the edge which is located on the initial or (in this case) final
space-like surface

network state and a final one as

ZT := 〈ψf | exp
(

i

∫ T

0

dtH
)

|ψi〉

=
∞
∑

n=0

(i T )n

n!

∫

dψ1 . . . dψn 〈ψf |H |ψ1〉

× 〈ψ1|H |ψ2〉 · · · 〈ψn|H |ψi〉 , (25)

where we have repeatedly inserted resolutions of unity. A (somewhat heuristic)
derivation of the above formula can be given by starting from a formal path
integral [41], which, after gauge fixing and choice of a global time coordinate
T , and with appropriate boundary conditions, can be argued to reduce to the
above expression. There are many questions one could ask about the physical
meaning of this expression, but one important property is that (just as with
the relativistic particle) the transition amplitude will project onto physical
states (formally, this projection is effected in the original path integral by
integrating over the lapse function multiplying the Hamiltonian density). One
might thus consider (25) as a way of defining a physical inner product.

Because path integrals with oscillatory measures are notoriously difficult
to handle, one might wonder at this point whether to apply a formal Wick
rotation to (25), replacing the Feynman weight with a Boltzmann weight, as
is usually done in Euclidean quantum field theory. This is also what is sug-
gested by the explicit formulae in [41], where i in (25) is replaced by (−1).
However, this issue is much more subtle here than in ordinary (flat space)
quantum field theory. First of all, the distinction between a Euclidean (Rie-
mannian) and a Lorentzian (pseudo-Riemannian) manifold obviously requires
the introduction of a metric of appropriate signature. However, spin foam
models, having their roots in (background independent) LQG, do not come
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with a metric, and thus the terminology is to some extent up to the beholder.
To avoid confusion, let us state clearly that our use of the words ‘Euclidean’
and ‘Lorentzian’ here always refers to the use of oscillatory weights eiSE and
eiSL , respectively, where the actions SE and SL are the respective actions
for Riemannian resp. pseudo-Riemannian metrics. The term ‘Wick rotated’,
on the other hand, refers to the replacement of the oscillatory weight eiS by
the exponential weight e−S , with either S = SE or S = SL. However, in
making use of this terminology, one should always remember that there is no
Osterwalder–Schrader type reconstruction theorem in quantum gravity, and
therefore any procedure (or ‘derivation’) remains formal. Unlike the standard
Euclidean path integral [2, 3], the spin foam models to be discussed below are
generally interpreted to correspond to path integrals with oscillatory weights
eiS , but come in both Euclidean and Lorentzian variants (corresponding to
the groups SO(4) and SO(1,3), respectively). This is true even if the state
sums involve only real quantities (nj-symbols, edge amplitudes, etc.), cf. the
discussion after (38).

The building blocks 〈ψk|H |ψl〉 in the transition amplitude (25) correspond
to elementary spin network transition amplitudes, as in Fig. 7. For a given
value of n, i.e. a given number of time slices, we should thus consider objects
of the type

Zψ1,...,ψn = 〈ψf |H |ψ1〉〈ψ1|H |ψ2〉 · · · 〈ψn|H |ψi〉 . (26)

Each of the building blocks depends only on the values of the spins at the
spin network edges and the various intertwiners in the spin network state.
The points where the Hamiltonian constraint acts non-trivially get associated
to spin foam vertices; see Fig. 8. Instead of working out (26) directly from
the action of the Hamiltonian constraint, one could therefore also define the
amplitude directly in terms of sums over expressions which depend on the
various spins meeting at the spin foam nodes. In this way, one arrives at the
so-called state sum models, which we will describe in the following section.

A problematic issue in the relation between spin foams and the canonical
formalism comes from covariance requirements. While tetrahedral symmetry
(or the generalisation thereof in four dimensions) is natural in the spin foam
picture, the action of the Hamiltonian constraint, depicted in Fig. 7, does
not reflect this symmetry. The Hamiltonian constraint only leads to the so-
called ‘1→ 3 moves’, in which a single vertex in the initial spin network is
mapped to three vertices in the final spin network. In the spin foam pic-
ture, the restriction to only these moves seems to be in conflict with the idea
that the slicing of space-time into a space+time decomposition can be chosen
arbitrarily. For space-time covariance, one expects 2 → 2 and 0 → 4 moves
(and their time-reversed partners) as well, see Fig. 9. These considerations
show that there is no unique path from canonical gravity to spin foam mod-
els, and thus no unique model either (even if there was a unique canonical
Hamiltonian).
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Fig. 8. A spin foam (left) together with its spin network evolution (right) in
(2+1) dimensions. Spin foam nodes correspond to the places where the Hamiltonian
constraint in the spin network acts non-trivially (black dots). Spin foam edges corre-
spond to evolved spin network nodes (grey dots), and spin foam faces correspond to
spin network edges. The spin labels of the faces are inherited from the spin labels of
spin network edges. If all spin network nodes are three-valent, the spin foam nodes
sit at the intersection of six faces, and the dual triangulation consists of tetrahedrons

It has been argued [41] that these missing moves can be obtained from the
Hamiltonian formalism by a suitable choice of operator ordering. In Sect. 4
we have used an ordering, symbolically denoted by FEE, in which the Hamil-
tonian first opens up a spin network and subsequently glues in a plaquette.

Fig. 9. The Hamiltonian constraint induces a 1→3 move in the spin foam formalism
(figure on the left). However, by slicing space-time in a different way, one can
equivalently interpret this part of the spin foam as containing a 2→2 move (figure
on the right). This argument suggests that the ultra-local Hamiltonian may not
be sufficient to achieve space-time covariance. For clarity, the network edges which
lie in one of the spatial slices have been drawn as thick lines
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If one chooses the ordering to be EEF , then the inverse densitised vielbeine
can open the plaquette, thereby potentially inducing a 2→ 2 or 0→ 4 move.
However, [30] has argued strongly against this operator ordering, claiming
that in such a form the Hamiltonian operator cannot even be densely defined.
In addition, the derivation sketched here is rather symbolic and hampered
by the complexity of the Hamiltonian constraint [44]. Hence, to summarise,
for (3+1) gravity a decisive proof of the connection between spin foam mod-
els and the full Einstein theory and its canonical formulation appears to be
lacking, and it is by no means excluded that such a link does not even exist.

7 Spin Foam Models: Some Basic Features

In view of the discussion above, it is thus perhaps best to view spin foam
models as models in their own right, and, in fact, as a novel way of defining a
(regularised) path integral in quantum gravity. Even without a clear-cut link
to the canonical spin network quantisation programme, it is conceivable that
spin foam models can be constructed which possess a proper semi-classical
limit in which the relation to classical gravitational physics becomes clear.
For this reason, it has even been suggested that spin foam models may pro-
vide a possible ‘way out’ if the difficulties with the conventional Hamiltonian
approach should really prove insurmountable.

The simplest context in which to study state sum models is (2+1) gravity,
because it is a topological (‘BF-type’) theory, i.e. without local degrees of
freedom, which can be solved exactly (see e.g. [45–47] and [48] for a more
recent analysis of the model within the spin foam picture). The most general
expression for a state sum in (2+1) dimensions takes, for a given spin foam φ,
the form

Zφ =
∑

spins {j}

∏

f,e,v

Af ({j})Ae({j})Av({j}) , (27)

where f, e, v denote the faces, edges, and vertices respectively. The amplitudes
depend on all these sub-simplices, and are denoted by Af , Ae, and Av respec-
tively. There are many choices which one can make for these amplitudes. In
three Euclidean dimensions, space-time covariance demands that the contri-
bution to the partition sum has tetrahedral symmetry in the six spins of the
faces which meet at a node (here we assume a ‘minimal’ spin foam; models
with more faces intersecting at an edge are of course possible).

Now, a model of this type has been known for a long time: it is the
Ponzano–Regge model for three-dimensional gravity, which implements the
above principles by defining the partition sum

ZPR
φ =

∑

spins {ji}

∏

faces f

(2 jf + 1)
∏

vertices v

j1

j3j4

j6
j5

j2 (28)
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The graphical notation denotes the Wigner 6j symbol, defined in terms of
four contracted Clebsch–Gordan coefficients as

{6j} ∼
∑

m1,...,m6

Cj1
m1

j2
m2

j3
m3

Cj5
m5

j6
m6

j1
m1

Cj6
m6

j4
m4

j2
m2

Cj4
m4

j5
m5

j3
m3

. (29)

For SU(2) representations, the sum over spins in the Ponzano–Regge state
sum (28) requires that one divides by an infinite factor in order to ensure con-
vergence (more on finiteness properties below) and independence of the trian-
gulation. The tetrahedron appearing in (28) in fact has a direct geometrical
interpretation as the object dual to the spin foam vertex. The dual tetrahe-
dron can then also be seen as an elementary simplex in the triangulation of the
manifold. Three-dimensional state sums with boundaries, appropriate for the
calculation of transition amplitudes between two-dimensional spin networks,
have been studied in [49].

When one tries to formulate spin foam models in four dimensions, the first
issue one has to deal with is the choice of the representation labels on the spin
foam faces. From the point of view of the canonical formalism it would seem
natural to again use SU(2) representations, as these are used to label the edges
of a spin network in three spatial dimensions, whose evolution produces the
faces (2-simplices) of the spin foam. However, this is not what is usually done.
Instead, the faces of the spin foam are supposed to carry representations of
SO(4) ≈ SO(3) × SO(3) [or SO(1,3) ≈ SL(2,C) for Lorentzian space-times].
The corresponding models in four dimensions are purely topological theories,
the so-called “BF models”, where F (A) is a field strength and B the Lagrange
multiplier two-form field whose variation enforces F (A) = 0. Up to this point,
the model is analogous to gravity in (2+1) dimensions, except that the relevant
gauge group is now SO(4) [or SO(1,3)]. However, in order to recover general
relativity and to re-introduce local (propagating) degrees of freedom into the
theory, one must impose a constraint on B.

Classically, this constraint says that B is a ‘bi-vector’, i.e. Bab = ea ∧ eb.
The quantum mechanical analogue of this constraint amounts to a restric-
tion to a particular set of representations of SO(4) = SU(2)⊗ SU(2), namely
those where the spins of the two factors are equal, the so-called balanced rep-
resentations , denoted by (j, j) (for j = 1

2 , 1,
3
2 , . . . ). Imposing this restriction

on the state sum leads to a class of models first proposed by Barrett and
Crane [50, 51]. In these models the vertex amplitudes are given by combining
the 10 spins of the faces which meet at a vertex, as well as possibly further
‘virtual’ spins associated to the vertices themselves, using an expression built
from contracted Clebsch–Gordan coefficients. For instance, by introducing an
extra ‘virtual’ spin ik associated to each edge where four faces meet, one can
construct an intertwiner between the four spins by means of the following
expression:

Ij1m1
···
···
j4
m4

;ik =
∑

mk

Cj1
m1

j2
m2

ik
mk

Cj3
m3

j4
m4

ik
mk

. (30)
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However, this prescription is not unique as we can choose between three dif-
ferent ‘channels’ (here taken to be 12 ↔ 34); this ambiguity can be fixed
by imposing symmetry, see below. Evidently, the number of channels and
virtual spins increases rapidly with the valence of the vertex. For the above
four-vertex, this prescription results in a state sum7

Z
{ik}
φ =

∑

spins {ji}

∏

faces f

∏

edges e

Af ({j}) Ae({j})

×
∏

vertices v

j1

j2

j0

j6

j5

j4

j7j8

j9 j3

i1

i2

i3i4

i5

, (31)

where the spins j denote spin labels of balanced representations (j, j) (as we
already mentioned, without this restriction, the model above corresponds to
the topological BF model [52–54]). The precise factor corresponding to the
pentagon (or “15j” symbol) in this formula is explicitly obtained by multi-
plying the factors (30) (actually, one for each SO(3) factor in SO(4)), and
contracting (summing) over the labels mi,

{15j} =
∑

mi

Ij1m1
j4
m4

j9
m9

j5
m5

;i1Ij1m1
j2
m2

j7
m7

j3
m3

;i2

× Ij4m4
j2
m2

j8
m8

j0
m0

;i3Ij9m9
j7
m7

j0
m0

j6
m6

;i4Ij5m5
j3
m3

j8
m8

j6
m6

;i5 . (32)

There are various ways in which one can make (31) independent of the spins ik
associated to the edges. One way is to simply sum over these spins. This leads
to the so-called ‘15j BC model’,

Z15j
φ =

∑

spins {ji, ik}

∏

faces f

∏

edges e

Af ({j}) Ae({j})×
∏

vertices v

{

15j
}

. (33)

An alternative way to achieve independence of the edge intertwiner spins is
to include a sum over the ik in the definition of the vertex amplitude. These
models are known as ‘10j BC models’,

Z10j
φ =

∑

spins {ji}

∏

faces f

∏

edges e

Af ({j}) Ae({j})

×
∏

vertices v

∑

spins {ik}
f({ik})

{

15j
}

, (34)

7 There is now no longer such a clear relation of the graphical object in (31) to the
dual of the spin foam vertex: faces and edges of the spin foam map to faces and
tetrahedrons of the dual in four dimensions, respectively, but these are neverthe-
less represented with edges and vertices in the figure in (31).
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labelled by an arbitrary function f({ik}) of the intertwiner spins. Only for
the special choice [50]

f({ik}) =
5
∏

k=1

(2ik + 1) (35)

does the vertex amplitude have simplicial symmetry [55], i.e. is invariant under
the symmetries of the pentagon (31) (where the pentagon really represents a
4-simplex).8

While the choice (34, 35) for the vertex amplitude Av({j}) is thus preferred
from the point of view of covariance, there are still potentially many differ-
ent choices for the face and edge amplitudes Af ({j}) and Ae({j}). Different
choices may lead to state sums with widely varying properties. The depen-
dence of state sums on the face and edge amplitudes is clearly illustrated by,
e.g., the numerical comparison of various models presented in [57]. A natural
and obvious restriction on the possible amplitudes is that the models should
yield the correct classical limit – to wit, Einstein’s equations – in the large j
limit, corresponding to the infrared (see also the discussion in the following
section). Therefore, any function of the face spins which satisfies the pentagon
symmetries and is such that the state sum has appropriate behaviour in the
large j limit is a priori allowed. Furthermore, the number of possible ampli-
tudes, and thus of possible models, grows rapidly if one allows for more general
valences of the vertices. In the literature, the neglect of higher-valence vertices
is often justified by invoking the fact that the valence ≤ 4 spin network wave
functions in the Hamiltonian formulation constitute a superselection sector in
Hkin (because the ‘spiderwebs’ in Fig. 6 do not introduce higher valences).
However, we find this argument unconvincing because (i) the precise relation
between the Hamiltonian and the spin foam formulation remains unclear, and
(ii) physical arguments based on ultralocality (cf. our discussion at the end of
Sect. 6) suggest that more general moves (hence, valences) should be allowed.

Let us also mention that, as an alternative to the Euclidean spin foam
models, one can try to set up Lorentzian spin foam models , as has been done
in [58, 59]. In this case, the (compact) group SO(4) is replaced by the non-
compact Lorentz group SO(1,3) [or SL(2,C)]. Recall that in both cases we deal
with oscillatory weights, not with a weight appropriate for a Wick-rotated
model. It appears unlikely that there is any relation between the Lorentzian
models and the Euclidean ones. Furthermore, the analysis of the corresponding

8 There is an interesting way to express combinatorial objects such as the 10j sym-
bol in terms of integrals over group manifolds, which goes under the name of
‘group field theory’ (see, e.g., [56]), and which also allows an interpretation in
terms of ‘Feynman diagrams’. The relation between spin foams and group field
theory is potentially useful to evaluate state sums because the corresponding in-
tegrals can be evaluated using stationary phase methods. We will, however, not
comment on this development any further since there is (under certain assump-
tions) a one-to-one map between spin foam models and group field theory models.
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Lorentzian state sums is much more complicated due to the fact that the
relevant (i.e. unitary) representations are now infinite-dimensional.

8 Spin Foams and Discrete Gravity

To clarify the relation between spin foam models and earlier attempts to define
a discretised path integral in quantum gravity, we recall that the latter can
be roughly divided into two classes, namely:

• Quantum Regge Calculus (see, e.g., [60]), where one approximates space-
time by a triangulation consisting of a fixed number of simplices, and
integrates over all edge lengths, keeping the ‘shape’ of the triangulation
fixed;

• Dynamical Triangulations (see, e.g., [61–63]), where the simplices are as-
signed fixed edge lengths, and one sums instead over different triangula-
tions, but keeping the number of simplices fixed (thus changing only the
‘shape’, but not the ‘volume’ of the triangulation).

Both approaches are usually based on a positive signature (Euclidean) met-
ric, where the Boltzmann factor is derived from, or at least motivated by,
some discrete approximation to the Einstein–Hilbert action, possibly with a
cosmological constant (but see [64, 65] for some recent progress with a Wick-
rotated ‘Lorentzian’ dynamical triangulation approach which introduces and
exploits a notion of causality on the space-time lattice). In both approaches,
the ultimate aim is then to recover continuum space-time via a refinement
limit in which the number of simplices is sent to infinity. Establishing the
existence of such a limit is a notoriously difficult problem that has not been
solved for four-dimensional gravity. In fact, for quantum Regge models in
two dimensions such a continuum limit does not seem to agree with known
continuum results [66–69] (see, however, [70]).

From the point of view of the above classification, spin foam models belong
to the first, ‘quantum Regge’, type, as one sums over all spins for a given spin
foam, but does not add, remove, or replace edges, faces, or vertices, at least
not in the first step. Indeed, for the spin foams discussed in the foregoing
section, we have so far focused on the partition sum for a single given spin
foam. An obvious question then concerns the next step, or more specifically the
question how spin foam models can recover (or even only define) a continuum
limit. The canonical setup, where one sums over all spin network states in
expressions like (25), would suggest that one should sum over all foams,

Ztotal =
∑

foams φ

wφ Zφ , (36)

where Zφ denotes the partition function for a given spin foam φ, and where
we have allowed for the possibility of a non-trivial weight wφ depending only
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on the topological structure (‘shape’) of the foam. The reason for this sum
would be to achieve formal independence of the triangulations. In a certain
sense this would mimic the dynamical triangulation approach (except that
one now would also sum over foams with a different number of simplices and
different edge lengths), and thus turn the model into a hybrid version of the
above approaches. However, this prescription is far from universally accepted,
and several other ideas on how to extract classical, continuum physics from
the partition sum Zφ have been proposed.

One obvious alternative is to not sum over all foams, but instead look for
a refinement with an increasing number of cells,9

Z∞ = lim
# cells→∞

Zφ . (37)

The key issue is then to ensure that the final result does not depend on the way
in which the triangulations are performed and refined (this is a crucial step
which one should understand in order to interpret results on single-simplex
spin foams like those of [71, 72]). The refinement limit is motivated by the fact
that it does appear to work in three space-time dimensions, where (allowing
for some ‘renormalisation’) one can establish triangulation independence [73].
Furthermore, for large spins, the 6j symbol which appears in the Ponzano–
Regge model approximates the Feynman weight for Regge gravity [74, 75].
More precisely, when all six spins are simultaneously taken large,

{6j} ∼
(

eiSRegge({j})+ iπ
4 + e−iSRegge({j})− iπ

4

)

. (38)

Here SRegge({j}) is the Regge action of a tetrahedron, given by

SRegge({j}) =
6

∑

i=1

ji θi , (39)

where θi is the dihedral angle between the two surfaces meeting at the ith
edge. Related results in four dimensions are discussed in [76] and, using group
field theory methods, in [77]. We emphasise once more that this by no means
singles out the 6j symbol as the unique vertex amplitude: we can still multiply
it by any function of the six spins which asymptotes to one for large spins.

The 6j symbol is of course real, which explains the presence of a cosine
instead of a complex oscillatory weight on the right-hand side of (38). Indeed,
it seems rather curious that, while the left-hand side of (38) arises from an
expression resembling a Boltzmann sum, the right-hand side contains oscil-
latory factors which suggest a path integral with oscillatory weights. In view
of our remarks in Sect. 6, and in order to make the relation to Regge gravity

9 But note that, formally, the sum over all foams can also be thought of as a
refinement limit if one includes zero spin representations (meaning no edge) in
the refinement limit.
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somewhat more precise, one must therefore argue either that a proper path
integral in gravity produces both terms, or otherwise that one can get rid of
one of the terms by some other mechanisms. The first possibility appears to
be realised in (2+1) gravity, because one can cast the gravitational action into
Chern–Simons form S =

∫

R∧ e, in which case a sum over orientations of the
dreibein would lead to terms with both signs in the exponent. Unfortunately,
this argument does not extend to four dimensions, where the gravitational
action S =

∫

R∧ e∧ e depends quadratically on the vierbein. For this reason,
it has instead been suggested that one of the two oscillatory terms disappears
for all physical correlation functions [71].

The vertex amplitudes represented by the 6j or 10j symbols only form
part of the state sum (27). The known four-dimensional models depend rather
strongly on the choice of the face and edge amplitudes: while some versions of
the Barrett–Crane 10j model have diverging partition sums, others are dom-
inated by configurations in which almost all spins are zero, i.e. configurations
which correspond to zero-area faces [57]. Once more, it is important to remem-
ber that even in ‘old’ Regge models in two dimensions, where a comparison
with exact computations in the continuum is possible [78–80], the continuum
limit does not seem to agree with these exact results [66–69] (the expectation
values of edge lengths do not scale as a power of the volume when a diffeomor-
phism invariant measure is used, in contrast to the exact results). Therefore,
it is far from clear that (37) will lead to a proper continuum limit.

A third proposal is to take a fixed spin foam and to simply define the
model as the sum over all spins [56, 81, 82]; this proposal differs considerably
from both the Regge and dynamical triangulation approaches. Considering
a fixed foam clearly only makes sense provided the partition sum is actu-
ally independent of the triangulation of the manifold (or more correctly, one
would require that physical correlators are independent of the triangulation).
Such a situation arises in the three-dimensional Ponzano–Regge model, but
three-dimensional gravity does not contain any local degrees of freedom. For
higher dimensions, the only triangulation-independent models known so far
are topological theories, i.e. theories for which the local degrees of freedom
of the metric do not matter. If one insists on triangulation independence also
for gravity, then one is forced to add new degrees of freedom to the spin foam
models (presumably living on the edges). In this picture, a change from a fine
triangulation to a coarse one is then compensated by more information stored
at the edges of the coarse triangulation. This then also requires (presumably
complicated) rules which say how these new degrees of freedom behave under
a move from one triangulation to another. Note that even when the partition
sum is independent of the refinement of the triangulation, one would probably
still want to deal with complicated cross sections of foams to describe ‘in’ and
‘out’ coherent states. At present, there is little evidence that triangulation in-
dependence can be realised in non-topological theories, or that the problems
related to the continuum limit will not reappear in a different guise.



178 H. Nicolai and K. Peeters

9 Predictive (Finite) Quantum Gravity?

Let us now return to the question as to what can be said about finiteness
properties of spin foam models, and how they relate to finiteness properties
(or rather, lack thereof!) of the standard perturbative approach – after all, one
of the main claims of this approach is that it altogether avoids the difficulties
of the standard approach. So far, investigations of finiteness have focused on
the partition sum itself. Namely, it has been shown that for a variety of spin
foam models, the partition sum for a fixed spin foam is finite,

∑

spins {j}
Zφ

({j}) = finite . (40)

Even though a given spin foam consists of a finite number of links, faces, . . . ,
divergences could arise in principle because the range of each spin j is infi-
nite. One way to circumvent infinite sums is to replace the group SU(2) by
the quantum group SU(2)q (which has a finite number of irreps), or equiv-
alently, by introducing an infinite positive cosmological constant [73]; in all
these cases the state sum becomes finite.10 A similar logic holds true in four
dimensions and for Lorentzian models, although in the latter case the analysis
becomes more complicated due to the non-compactness of the Lorentz group,
and the fact that the unitary representations are all infinite dimensional [84].
Perhaps unsurprisingly, there exist choices for edge and surface amplitudes
in four dimensions which look perfectly reasonable from the point of view of
covariance, but which are nevertheless not finite [57].

It should, however, be emphasised that the finiteness of (40) is a state-
ment about infrared finiteness. Roughly speaking, this is because the spin j
corresponds to the ‘length’ of the link, whence the limit of large j should be
associated with the infinite volume limit. In statistical mechanics, partition
functions generically diverge in this limit, but in such a way that physical
correlators possess a well-defined limit (as quotients of two quantities which
diverge). From this point of view, the finiteness properties established so far
say nothing about the UV properties of quantum gravity, which should in-
stead follow from some kind of refinement limit, or from an averaging pro-
cedure where one sums over all foams, as discussed above. The question of
convergence or non-convergence of such limits has so far not received a great
deal of attention in the literature.

This then, in a sense, brings us back to square one, namely the true prob-
lem of quantum gravity, which lies in the ambiguities associated with an in-
finite number of non-renormalisable UV divergences. As is well known this

10 The division by the infinite factor which is required to make the Ponzano–Regge
state sum finite can be understood as dividing out the volume of the group of
residual invariances of Regge models [83]. These invariances correspond to changes
of the triangulation which leave the curvature fixed. However, dividing out by the
volume of this group does not eliminate the formation of ‘spikes’ in Regge gravity.
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problem was originally revealed in a perturbative expansion of Einstein gravity
around a fixed background, which requires an infinite series of counterterms,
starting with the famous two-loop result [85–87]

Γ
(2)
div =

1
ε

209
2880

1
(16π2)2

∫

d4x
√
g CμνρσC

ρσλτCλτ
μν . (41)

The need to fix an infinite number of couplings in order to make the the-
ory predictive renders perturbatively quantised Einstein gravity useless as a
physical theory. What we would like to emphasise here is that any approach
to quantum gravity must confront this problem, and that the need to fix
infinitely many couplings in the perturbative approach, and the appearance
of infinitely many ambiguities in non-perturbative approaches are really just
different sides of the same coin.

At least in its present incarnation, the canonical formulation of LQG does
not encounter any UV divergences, but the problem reappears through the
lack of uniqueness of the canonical Hamiltonian. For spin foams (or, more gen-
erally, discrete quantum gravity) the problem is no less virulent. The known
finiteness proofs all deal with the behaviour of a single foam, but, as we ar-
gued, these proofs concern the infrared rather than the ultraviolet. Just like
canonical LQG, spin foams thus show no signs of ultraviolet divergences so far,
but, as we saw, there is an embarras de richesse of physically distinct models,
again reflecting the non-uniqueness that manifests itself in the infinite number
of couplings associated with the perturbative counterterms. Indeed, fixing the
ambiguities of the non-perturbative models by ad hoc, albeit well-motivated,
assumptions is not much different from defining the perturbatively quantised
theory by fixing infinitely many coupling constants ‘by hand’ (and thereby
remove all divergences). Furthermore, even if they do not ‘see’ any UV diver-
gences, non-perturbative approaches cannot be relieved of the duty to explain
in all detail how the 2-loop divergence (41) and its higher loop analogues
‘disappear’, be it through cancellations or some other mechanism.

Finally, let us remark that in lattice gauge theories, the classical limit
and the UV limit can be considered and treated as separate issues. As for
quantum gravity, this also appears to be the prevailing view in the LQG
community. However, the continuing failure to construct viable physical semi-
classical states, solving the constraints even in only an approximate fashion,
seems to suggest (at least to us) that in gravity the two problems cannot be
solved separately, but are inextricably linked – also in view of the fact that
the question as to the precise fate of the two-loop divergence (41) can then
no longer be avoided.
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1 Introduction

Loop quantum gravity (LQG) [1–3] has become a serious competitor to string
theory as a candidate theory of quantum gravity. Its popularity is steadily
growing because it has transpired that the major obstacle to be solved in
combing the principles of general relativity and quantum mechanics is to pre-
serve a key feature of Einstein’s theory, namely background independence.
LQG, in contrast to the present formulation of string theory, has background
independence built in by construction.

Loosely speaking, background independence means that the spacetime
metric is not an external structure on which matter fields and gravitational
perturbations propagate. Rather, the metric is a dynamical entity which be-
comes a fluctuating quantum operator. These fluctuations will be huge in
extreme astrophysical (centre of black holes) and cosmological (big bang sin-
gularity) situations and the notion of a (smooth) background metric disap-
pears, the framework of quantum field theory on (curved) background metrics
[4, 5] becomes meaningless. Since quantum gravity is supposed to take over as
a more complete theory precisely in those situations when there is no mean-
ingful concept of a (smooth) metric at all available, background independence
is a necessary feature of a successful quantum gravity theory.

Indeed, the modern formulation of ordinary QFT on background space-
times uses the algebraic approach [6] and fundamental for this framework is
the locality axiom: Two (scalar) field operators ̂φ(f), ̂φ(f ′) which are smeared
with test functions f, f ′ whose supports are spacelike separated are axiomat-
ically required to commute. In other words, the causality structure of the
external background metric defines the algebra of field operators A. One then
looks for Hilbert space representations of A. It follows that without a back-
ground metric one cannot even define quantum fields in the usual setting.

Notice that background independence implies that a non-perturbative for-
mulation must be found. For, if we split the metric as g = g0 + h where g0 is
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a given background metric and treat the deviation h (graviton) as a quantum
field propagating on g0, then we break background independence because we
single out g0. We also break the symmetry group of Einstein’s theory which is
the group of diffeomorphisms of the given spacetime manifold M . Moreover, it
is well known that this perturbative formulation leads to a non-renormalisable
theory, with [7] or without [8] supersymmetry. String theory [9] in its current
formulation is also background dependent because one has to fix a target space
background metric (mostly Minkowski space or maybe AdS) and let strings
propagate on it. Some excitations of the string are interpreted as gravitons
and one often hears that string theory is perturbatively finite to all orders, in
contrast to perturbative quantum gravity. However, this has been established
only to second order and only for the heterotic string [10] which is better but
still far from a perturbatively finite theory. In fact, even perturbative finiteness
is not the real issue because one can formulate perturbation theory in such a
way that UV divergences never arise [11]. The issue is (1) whether only a finite
number of free renormalisation constants need to be fixed (predictability) and
(2) whether the perturbation series converges. Namely, in a fundamental the-
ory as string theory claims to be, there is no room for singularities such as a a
divergent perturbation series. This is different from QED which is believed to
be only an effective theory. Hence, before one does not prove convergence of
the perturbation series, string theory has not been shown to be a fundemantal
theory. All these issues are obviously avoided in a manifestly non-perturbative
formulation.

One of the reasons why LQG is gaining in its degree of popularity as
compared to string theory is that LQG has “put its cards on the table”. LQG
has a clear conceptual setup which follows from physical considerations and
is based on a rigorous mathematical formulation. The “rules of the game”
have been written and are not tempered with. This makes it possible even
for outsiders of the field [12, 13] to get a relatively good understanding of the
physical and mathematical details. There is no room for extra, unobserved
structures, the approach is intendedly minimalistic. In LQG one just tries
to make quantum gravity and general relativity work together harmonically.
However, in order to do so one must be ready to go beyond some of the
mathematical structures that we got used to from ordinary QFT as we have
explained. Much of the criticism against LQG of which some can be found in
[12] has to do with the fact that physicists equipped with a particle physics
background feel uneasy when one explains to them that in LQG we cannot use
perturbation theory, Fock spaces, background metrics etc. This is not the fault
of LQG. It will be a common feature of all quantum gravity theories which
preserve background independence. In such theories, the task is to construct
a new type of QFT, namely a QFT on a differential manifold M rather than
a QFT on a background spacetime (M, g0). Since such a theory “quantises all
backgrounds at once” in a coherent fashion, the additional task is then to show
that for any background metric g0 the theory contains a semiclassical sector
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which looks like ordinary QFT on (M, g0). This is what LQG is designed to
do, not more and not less.

Another criticism which is raised against LQG is that it is not a unified
theory of all interactions in the sense that string theory claims to be. Indeed, in
LQG one quantises geometry together with the fields of the (supersymmetric
extension of the) standard model. At present there seem to be no constraints
on the particle content or the dimensionality of the world. In fact, this is not
quite true because the size of the physical Hilbert space of the theory may
very well depend on the particle content, and moreover the concrete algebra
A which one quantises in LQG is available only in 3+1 dimensions. But apart
from that it is certainly true that LQG cannot give a prediction of the matter
content. The fact that all matter can be treated may however be an advantage
because given the fact that in the past 100 years we continuously discovered
substructures of particles up to the subnuclear scale makes it likely that we
find even more structure until the Planck scale which is some 16 orders of
magnitude smaller than what the LHC can resolve. Hence, LQG is supposed
to deliver a universal framework for combining geometry and matter, however,
it does not uniquely predict which matter; and does not want to. Notice that
while theorists would find a “unique” theory aesthetical, there is no logical
reason why a fundamental theory should be mathematically unique.

In this context we would like to point out the following: One often hears
that string theory is mathematically unique, predicting supersymmetry, the
dimensionality (ten) of the world and the particle content. What one means
by this is that a consistent quantum string theory based on the Polyakov ac-
tion on the Minkowski target spacetime exists only if one is in ten dimensions
and only if the theory is supersymmetric and there only five such theories.
However, this is not enough in order to have a unique theory because string
theory must be decompactified from ten to four dimensions with supersymme-
try being broken at sufficiently high energies in order to be phenomenologically
acceptable. Recent findings [14] show that for Minkowski space there are an
at least countably infinite number of physically different, phenomenologically
acceptable ways to compactify string theory from ten to four dimensions.
These possibilities are labelled by flux vacua and the resulting collection of
quantum string theories is called the landscape. In this sense, string theory
is far from being mathematically unique. The presence of an infinite number
of possibilities could be interpreted as the loss of predictability of string the-
ory and the use of the anthropic principle was proposed [15]. The question,
whether a physical theory that needs the anthropic principle still can be called
a fundamental theory, was discussed in [16].

Our interpretation of the landscape is the following which is in agreement
with [17]:
The anthropic principle should be avoided by all means in a fundamental
theory, hence a new idea is needed and it is here where background indepen-
dence could help. We notice that each landscape vacuum is based on a differ-
ent background structure (flux charges, moduli). In addition, a landscape will
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exist for each of the uncountably infinite number of target space background
spacetimes.1 Thus, the full string theory landscape is presumably labelled not
only by flux vacua on a given spacetime but also by the background space-
times. Suppose one could rigorously quantise string theory on all of these
background structures. Then, if one knew how to combine all of these distinct
quantum theories into a single one, thus achieving background independence,
then the landscape would have disappeared. The understanding of the present
author is that this is what M-theory is supposed to achieve but currently, to
the best knowledge of the author, there seems to be no convincing idea for
how to do that.

In this chapter we summarise the status of the quantum dynamics of LQG
which has been the focal point of criticism in [12]. Our intention is to give a
self-contained inside point of view of the subject which is complementary to
[12] in the sense that we explain in some detail why the constructions used
in LQG are physically well motivated and sometimes even mathematically
unique, hence less ambiguous than described in [12]. We exactly define what
is meant by canonical quantisation of general relativity, indicating explicitly
the freedom that one has at various stages of the quantisation programme.
We will see that the theory has much less freedom than [12] makes it look
like. In particular, we evaluate “what has been gained in LQG as compared
to the old geometrodynamics approach” and we will see that the amount
of progress is non-trivial. We also include more recent results such as the
master constraint programme [19] which tightens the implementations of the
quantum dynamics and enables to systematically construct the physical inner
product, which was not possible as of 3 years ago. Furthermore, in order to
show that there is not only mathematical progress in LQG, we also fill the
gaps that [12] did not report on such as the semiclassical sector of the theory,
matter coupling, quantum black hole physics, quantum cosmology and LQG
phenomenology. Finally we also show that the key technique that was used
to make the Wheeler–DeWitt operator well defined [20] is also the underlying
reason for the success of loop quantum cosmology (LQC) which is the usual
cosmological minisuperspace toy model quantised with the methods of LQG.

Here we only sketch these results since we want to reach a rather general
audience. All the technical details can be found in the comprehensive and
self-contained monograph [2].

Remark
Since no theoretical Ansatz concerning quantum gravity has been yet brought
to completion each of these Ansätze is understandably subject to criticisms.
1 Currently string theory can be quantised only on a handful of target space back-

ground spacetimes, mostly only on those on which the theory becomes a free field
theory. For instance, on AdS5×S5, which is much discussed in the context of the
famous AdS/CFT correspondence [18], string theory is interacting and to the best
knowledge of the author currently no quantum string theory on this spacetime
was constructed.
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This is clearly the case also for LQG, and in particular such criticisms can be
found, e.g., in [12], or in the paper by Nicolai and Peeters [13] in this book.
We want to stress that the purpose of this chapter, while in part a response
to [12], is not to criticise [12]. In fact, the considerable effort of the non-expert
authors of [12] to present LQG in as much technical detail as they did from a
particle physicist’s perspective is highly appreciated. Rather, what we have in
mind is to draw a more optimistic picture than [12] did, to hopefully resolve
confusions that may have arisen from gaps in [12] and to give a more complete
picture of all the research being done in LQG than [12] did. The discussion
will be kept objectively, problems with the present formulation of LQG will
not be swept under the rug but rather discussed in great detail together with
their possible solutions.

2 Classical Preliminaries

The starting point is a Lagrangean formulation of the classical field theory,
say the Einstein–Hilbert–Lagrangean for general relativity. Hence one has an
action

S =
∫

M

dn+1X L(Φ, ∂Φ) (1)

where L is the Lagrangean density, that is, a scalar density of weight one
constructed in a covariant fashion from the fields Φ and their first partial
derivatives2 which is sufficient for gravity and all known matter. Here Φ stands
for a collection of fields including the metric and all known matter. M is an
(n + 1)-dimensional, smooth differential manifold.

If one wants to have a well-posed initial value formulation, then the metric
fields g that live on M are such that (M, g) is globally hyperbolic which implies
[23] that M is diffeomorphic to the direct product R × σ where σ is an n-
dimensional smooth manifold.3 Since the action (1) is invariant under Diff(M),
the diffeomorphisms Y : R × σ → M ; (t, x) �→ Yt(x) are a symmetry of the
action. For each Y we obtain a foliation of M into a one-parameter family
of spacelike hypersurfaces Σt = Yt(σ). One now pulls all fields back by Y
and obtains an action on R × σ. Due to the arbitrariness of Y , this action
contains n+1 fields, usually called lapse and shift fields, which appear without
time derivatives, they are Lagrange multipliers. The Legendre transformation
is therefore singular and leads to constraints on the resulting phase space
[25, 26]. They can be obtained by extremisation of the action with respect to
the Lagrange multipliers.

Hence, after the Legendre transformation we obtain a phase space M of
canonical fields φ which are the pull-backs to σ of the spacetime fields Φ

2 Higher derivative theories can also be treated canonically [21]; however, they are
generically pathological, that is, unstable [22].

3 Unless otherwise stated we take σ to be compact without boundary in order to
avoid a lengthy discussion of boundary terms.
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together with their canonically conjugate momenta π. The symplectic man-
ifold M with coordinates (φ(x), π(x))x∈σ equipped with the corresponding
canonical bracket4 {φ(x), π(x′)} = δ(n)(x, x′) is a time t independent object.

As one can show by purely geometric arguments [27], these constraints
are automatically of first class in the terminology of Dirac, that is, they close
under their mutual Poisson brackets, irrespective of the matter content of the
theory. As we will need them in some detail later on, let us display this so
called Dirac algebra D in more detail

{D(N ), D(N ′)} = 8πGNewton D(LNN ′)
{D(N), H(N ′)} = 8πGNewton H(LNN ′)
{H(N), H(N ′)} = 8πGNewton D(q−1(NdN ′ −N ′dN) (2)

The notation is as follows: We distinguish between the so-called spatial dif-
feomorphism constraints Da(x), a = 1, .., n; x ∈ σ and the Hamiltonian
constraints H(x), x ∈ σ. Notice that these are infinitely many constraints,
n + 1 per x ∈ σ. We smear them with test functions Na, N , specifically
D(N ) =

∫

σ d3x NaDa and H(N) =
∫

σ d3x NH . Finally, qab is the pull-back
to σ of the spacetime metric with inverse qab and L denotes the Lie derivative.

The algebra D is universal and underlies the canonical formulation of
any field theory based on an action which is Diff(M) invariant and contains
general relativity in n + 1 dimensions as, for instance, the closed bosonic
string5 [28].

As we can read off from (2), it has the following structure: The first line
in (2) says that elements of the form D(N ) generate a subalgebra which can
be identified with the Lie algebra diff(σ) of the spatial diffeomorphism group
Diff(σ) of σ. This is why the D(N), where the N are arbitrary smooth vector
fields on σ of rapid decrease, are called spatial diffeomorphism constraints.
The second line in (2) says that diff(σ) is not an ideal of D because the
Hamiltonian constraints H(N), where the N are arbitrary smooth functions
on σ of rapid decrease, are not diff(σ) invariant. The name Hamiltonian con-
straint stems from the fact that the Hamiltonian flow of this constraint on
the phase space generates gauge motions which, when the equations of motion
hold, can be identified with spacetime diffeomorphisms generated by vector
fields orthogonal to the hypersurfaces Σt. Finally the third line in (2) says
that (2) is not a Lie algebra in the strict sense of the word because, while the
right-hand side of the Poisson bracket between two Hamiltonian constraints
is a linear combination of spatial diffeomorphism constraints, the coefficients

4 We suppress spatial tensor and internal Lie algebra indices.
5 A closed bosonic string is an embedding of a circle σ := S1 into aD+1 dimensional

target space background manifold, mostly D + 1 dimensional Minkowski space.
The spacetime manifold of the string is therefore M = R × S1, that is, a 2D
cylinder. In 2D gravity is topological, hence gravity is also trivially contained in
string theory.
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in that linear combination have non-trivial phase space dependence through
the tensor qab(x).

A pecularity happens in the case n = 1, such as the closed bosonic string:
In n = 1 dimensions, p-times contravariant and q-times covariant tensors are
the same thing as scalar densities of weight q − p. For this reason, in con-
trast to n > 1 dimensions, in n = 1 dimensions the constraints come with a
natural density weight of two rather than one while the smearing functions
acquire density weight −1 rather than 0. One can think of this as if the ac-
tual constraints had been multiplied by a factor of

√
q while the smearing

functions had been multiplied by a factor of
√
q−1 which, however, does not

change the Poisson bracket because gravity is not dynamical in 2D. For this
reason the factor q−1 must be absent in the third relation in (2) in order to
match the density weights on both sides of the equations. This is why only
in 2D the Dirac algebra D is a true Lie algebra. In fact, using the combina-
tions V± := H ± D one realises that the Dirac algebra acquires the struc-
ture a direct sum of loop algebras (Lie algebra of the diffeomorphism group
of the circle) D ∼= diff(S1) ⊕ diff(S1), see [28] for all the details. Thus, in
2D the Dirac algebra trivialises. It does not even faintly display the compli-
cations that come with the non-Lie algebra structure of D in realistic field
theories, that is, D = 4. Therefore, any comparisons made between struc-
tures in 2D and 4D which hide this important difference are void of any
lesson.

Proceeding with the general classical theory, what we are given is a phase
space M subject to a collection of constraints CI , I ∈ I where in our case
the labelling set comprises the N,N . These constraints force us to consider
the constraint hypersurface M := {m ∈ M; CI(m) = 0 ∀ I ∈ I}. The
closure of D means that the Hamiltonian flow of the CI preserves M. Since
the CI generate gauge transformations (namely spacetime diffeomorphisms),
all the points contained in the gauge orbit [m] through m ∈ M must be
identified as physically equivalent. As one can show in general [29], the set of
orbits ̂M := {[m]; m ∈M} is again a symplectic manifold and known as the
reduced phase space.

It is mathematically more convenient to consider functions on all of M
which are invariant under gauge transformations, called Dirac observables.
Their restrictions to m ∈M are completely determined by [m]. The physical
idea to construct such functions is due to Rovelli [30] and its mathemati-
cal implementation has been much improved recently in [31] (see also [32]).
For a particularly simple realisation of this so-called “relational Ansatz” in
terms of suitable matter, see [33]. We consider functions TI on M which
have the property that the matrix with entries AIJ := {CI , TJ} is invertible
(at least locally). Let XI be the Hamiltonian vector field of the constraint
C′
I :=

∑

J(A−1)IJCJ . The set of constraints C′
I is equivalent to the set of the

CI but the C′
I have the advantage that the vector fields XI are weakly (i.e.

on M) mutually commuting. Now, given any smooth function f on M and
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any real numbers τI , in the range of the TI , consider

Of (τ) := [αt(f)]t=τ−T , αt(f) := [exp(
∑

I

tIXI) · f ] (3)

Notice that one is supposed to first evaluate αt(f) with tI considered as real
numbers and then evaluate the result at the phase space dependent point
tI = τI − TI . It is not difficult to show that (3) is a weak Dirac observable,
that is {CI , Of (τ)}|M = 0. It has the physical interpretation of displaying
the value of f in the gauge TI = τI . Equivalently, it is the gauge-invariant
extension of f off the gauge cut T = τ and in fact can be expanded in a power
series in τ − T by expanding the exponential function in (3).

The relational Ansatz solves the problem of time of canonical quantum
gravity: By this one means that in generally covariant systems there is no
Hamiltonian, there are only Hamiltonian constraints. Since the observables
of the theory are the gauge-invariant functions on phase space, that is, the
Dirac observables, “nothing moves in canonical quantum gravity” because
the Poisson brackets between the Hamiltonian constraints and the Observ-
ables vanishes (weakly) by construction. The missing evolution of the Dirac
observables Of (τ) is now supplied as follows: Using the fact that the map αt
in (3) is actually a Poisson automorphism (i.e. a canonical transformation)
one can show that (1) if the phase space coordinates can be subdivided into
canonical pairs (TI , πI) and (qa, pa) and (2) if f is a function of only6 qa, pa
then the evolution in τI has a Hamiltonian generator [32]. That is, there exist
Dirac observables HI(τ) such that ∂Of (τ)/∂τI = {Of (τ), HI(τ)}.

The task left is then to single out a one-parameter family s �→ τI(s) such
that the corresponding Hamiltonian

H(s) =
∑

I

τ̇I(s)HI(τ(s)) (4)

is positive, s-independent, and reduces to the Hamiltonian of the standard
model on flat space. This has been achieved recently in [33] using suitable
matter which supplies the clocks TI with the required properties. It follows
that the gauge-invariant functions Of (s) then evolve according to the phys-
ical Hamiltonian H . Moreover, they satisfy the algebra {Of (s), Of ′(s)} =
O{f,f ′}(s) because the s evolution has the canonical generator H .

2.1 Summary

Classical canonical gravity has a clear conceptual and technical formulation
with no mysteries or unsolved conceptual problems. Certainly classical gen-
eral relativity is not an integrable system and thus not everything is techni-
cally solvable (for instance, not all solutions to the field equations are known)
6 Nothing is lost by this assumption because TI is pure gauge and the constraints

can be solved for πI in terms of qa, pa, TI .
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but one exactly knows what to do in order to try to solve a given problem.
The canonical formulation that we have used here for a generally covariant
field theory is widely used in numerical general relativity with great success.
General covariance is manifestly built into the framework and is faithfully
represented in terms of the Dirac algebra D (2) which is the key object to
construct the invariants (3) of the theory and the physical Hamiltonian H (4)
according to which they evolve. At no point in those constructions did one use
a background metric or did one violate spacetime diffeomorphism invariance.
This is because, while one did use a split of spacetime into space and time,
one did consider all splits simultaneously which is reflected in the constraints
that in turn enforce spacetime diffeomorphism invariance.

For clarity we mention that diffeomorphism invariance should not be con-
fused with Poincaré invariance. Poincaré invariance is an invariance of a spe-
cial solution to Einstein’s vacuum equations. It is not a symmetry or a gauge
invariance of the theory. The gauge group is Diff(M) which is a background
metric independent object because it only refers to the differential manifold
M but to no metric. In fact, if σ is compact as appropriate for certain cos-
mological models, then the Poincaré group P has no place in the theory. If
M is equipped with asymptotically flat boundary conditions then in fact one
can in addition define Poincaré generators of P as functions on phase space,
called ADM charges [24]. These are particular Dirac observables. Notice that
P is not contained in Diff(M) because diffeomorphisms are of rapid decrease
at spatial infinity (at least they vanish there). This must be because P is a
symmetry and not a local gauge invariance like Diff(M).

3 Canonical Quantisation Programme

The programme of canonical quantisation is a mathematical formalism which
seeks to provide a quantum field theory from a given classical field theory.
There are several choices to be made within the formalism and the outcome
depends on it. This applies to ordinary field theories such as free scalar fields
on Minkowski space as well as to more complicated situations. In the pres-
ence of constraints such as in general relativity one would ideally solve the
constraints classically before quantising the theory. That is, one studies the
representation theory of the algebra of invariants such as (3). Unfortunately,
this is generically too difficult because the algebra of invariants is complictated
and thus usually prevents one from using standard representations for simple
algebras such as a Fock representation for usual CCR (canonical commutation
relation) or CAR (canonical anticommuttion relation) algebras.

Thus, in order to start the quantisation process one follows Dirac [25]
and starts with a redundant set of functions on phase space which generate
a sufficiently simple Poisson algebra so that suitable representations thereof
can be found. These functions are not gauge invariant but provide a system
of coordinates for M. Then, in a second step, provided that the constraints
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themselves can be represented on the chosen, so-called “kinematical”, Hilbert
space as closable7 and densely defined operators, one looks for the generalised
joint kernel of the constraint operators. Here generalised refers to the fact that
the joint kernel typically has trivial intersection with the Hilbert space, that
is, the non-zero solutions of the constraints are not normalisable. Rather,
they are elements of the physical Hilbert space which is not a subspace of
the kinematical Hilbert space. The physical Hilbert space is induced from
the kinematical Hilbert space by applying standard spectral theory to the
constraint operators. Once the physical Hilbert space is known, at least in
principle, it automatically carries a self-adjoint representation of the algebra
of strong observables, that is, those operators that commute with all quantum
constraints and for which (3) and (4) are the classical counterparts.

All of this is of course difficult, if not impossible, to carry out exactly and
in full completeness for general relativity because, after all, one is dealing
with a rather non-linear and highly interacting QFT. Hence, in praxis one
will have to develop and rely on approximation schemes. However, these are
only technical difficulties coming from the complexity of the theory. There are
no in principle obstacles, the programme of canonical quantisation follows a
clear sequence of steps at each of which one knows exactly what one has to do
and sometimes one has a certain freedom which one will exploit using physical
intuition.

After the above sketch of the programme, we will now become somewhat
more detailed and pin down explicitly the freedom that one has and the choices
that one has to make.

The starting point is then a symplectic manifoldM subject to real valued,
first-class constraints CI , I ∈ I. That is, we have {CI , CJ} = fIJ

K CK for
some, possibly phase space dependent functions fIJ

K , called structure func-
tions. We will assume for simplicity, as it is the case in general relativity, that
we are dealing with a completely parametrised system, that is, there is no a
priori gauge-invariant Hamiltonian. In order to simplify the discussion for the
purposes of this short review, we display here for concreteness a recently pro-
posed strategy [19, 34] to deal with those constraints: Consider instead the
individual constraints CI the single master constraint M :=

∑

I CIKIJCJ .
Here K = (KIJ ) is a positive definite matrix valued function on phase space.
The master constraint contains the same information about the gauge redun-
dancy of the system as the individual CI since M = 0 is equivalent with CI = 0
for all I and the equation {O, {O,M}}M=0 is equivalent with {O,CI}M=0 for
all I. Hence the master constraint selects the same reduced phase space as the
original set of constraints. The reason for using the matrix K is that we can
and often must use the associated freedom to regularise the square of the con-
straints: namely, typically the CI become operator-valued distributions and
their square is therefore ill-defined. By a judicious choice of K (which also
becomes an operator) one can remove the corresponding UV singularity. See,
e.g., [35] for examples.
7 That is, the adjoint is also densely defined.
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Given this set-up, the programme of canonical quantisation consists of the
following:8

I. Algebra of elementary functions E
Select a Poisson sub∗−algebra E of C∞(M), called elementary functions,
which separates the points ofM. That is, E should be closed under taking
Poisson brackets and complex conjugation and for any m �= m′ there
exists e ∈ E such that e(m) �= e(m′). The latter property implies that
any f ∈ C∞(M) can be thought of as a function of the elements of E
so that E is a sytstem of coordinates for M (which maybe redundant).
The choice of E will be guided by mathematical convenience and physical
intuition: One will try to use bounded functions, such as the Weyl elements
used in free field theories, in order to deal with bounded operators later
on which avoids domain questions. Of course, the algebra E should be
sufficiently simple in order that one can manage to find representations of
the corresponding quantum algebra at all. Furthermore, one will choose
E in such a way that its elements transform in a simple way under the
gauge group of the system in question.

II. Quantum ∗−algebra A
One now constructs a ∗−algebra A using the following well-known proce-
dure: We consider the free algebra F of finite linear combinations of for-
mal words. A word is a formal finite sequence of elements w = (e1..eN).
Multiplication of words consists in combining sequences, e.g. w · w′ =
(e1..eN ) · (e′1..e′N ′) := (e1..eNe′1..e′N ′). The involutive structure is defined
by w∗ := (e∗N ..e∗1). We now consider the two-sided ideal I generated by
elements of the form (1). ee′− e′e− i�{e, e′} and (2) e∗− e. The quantum
algebra is the quotient A := F/I.

III. Kinematical Hilbert space
Next we study the representation theory of A. As is well known, for field
theories such as general relativity the number of unitarily inequivalent
representations is usually uncountably infinite. For instance, all Fock rep-
resentations of a free massive scalar field with different masses are unitarily
inequivalent. This follows by a simple application of Haag’s theorem [6].
Hence, in order to select from this multitude of possibilities one must use
dynamical input, such as the mass in the scalar field example. In the case
of the presence of the constraints, dynamical input into the representation
problem is provided for instance by asking that (parts of) the gauge group
be represented unitarily on the corresponding Hilbert space or that the
constraints be represented at all as closable and densely defined opera-
tors, possibly subject to some choice of factor ordering and maybe after
some sort of regularisation and renormalisation. For the purpose of this
discussion it will be sufficient to insist that the kinematical Hilbert space
H carries the master constraint operator ̂M as a positive and self-adjoint
operator.

8 What follows is still a simplified version. See [2] for a complete discussion.
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IV. Physical Hilbert space
The idea to solve the master constraint is to apply spectral theory to it
[34]. Suppose that the Hilbert H decomposes into separable ̂M -invariant
subspaces Hθ where θ labels the corresponding sectors. Then it is well
known that Hθ is unitarily equivalent to a direct integral Hilbert space

Hθ ∼= H⊕
θ :=

∫ ⊕

spec(̂M)

dμ(λ) Hθ
λ (1)

Here the measure class μ on the spectrum spec(̂M) of the master con-
straint is unique and the multiplicities dim(Hθ

λ) are unique up to μ-
measure zero sets. The unitary map U : Hθ → H⊕

θ ; ψ �→ (ψ̃(λ))λ is a
generalisation of the Fourier transform and is such that U ̂Mψ = (λψ̃(λ))λ,
that is, U ̂MU−1 is represented as multiplication by λ on Hθ

λ. We have

< ψ,ψ′ >Hθ
=< Uψ,Uψ′ >H⊕

θ
=

∫

spec(̂M)

dμ(λ) < ψ̃(λ), ψ̃′(λ) >Hθ
λ

(2)
The physical Hilbert space is now defined as

Hphys := ⊕θ Hθ
λ=0 (3)

There are several remarks in order about (3):

1. In order that this works one must Lebesgue decompose every space Hθ
into the ̂M -invariant pure point, absolutely continious and continuous
singular pieces and then decompose them as a direct integral.

2. The spacesHθ
λ=0 are uniquely determined in the pure point case but in the

absolutely continuous case (and continuous singular case, which usually is
absent in practice) further input is required because here the set {λ = 0}
is of μ-measure zero. Roughly speaking, one requires that the space Hθ

0

carries a non-trivial, irreducible representation of the algebra of (strong)
observables. See [34] for details.

3. Due to a bad choice of factor ordering involved in the construction of ̂M
it may happen that 0 �∈ spec(̂M). This typically happens when the quan-
tum constraints ̂CI that enter the definition of ̂M are anomalous, that is,
if they do not close as a quantum algebra. This can easily happen espe-
cially in the case that the classical constraint algebra involves non-trivial
structure functions rather than structure constants. Hence, although the
master constraint always trivially forms a non anomalous algebra, possible
anomalies in the original algebra are detected by it, so nothing is swept
under the rug. In this case, following [36], we propose to replace ̂M by
̂M ′ = ̂M − λ0 where λ0 = min(spec(̂M)). Here λ0 should be finite and
lim�→0 λ0 = 0 in order that both ̂M, ̂M ′ have the same classcial limit.
This has worked so far in all studied cases [35] where λ0 is related to
a reordering or normal ordering of the constraints into a non-anomalous
form.
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4. In case that the constraints can be exponentiated to a Lie group G one
can avoid the construction of the master constraint and apply a more
heuristic technique called group averaging [37]. This is at most possible if
the constraints form an honest Lie algebra with structure constants rather
than structure functions. Since we may assume without loss of generality
that the constraints and the structure constants are real valued, we assume
that we are given a unitary representation U of G on H. Assume also that
there is a Haar measure ν on G, that is, a not necessarily normalised but
bi-invariant (with respect to group translations) positive measure on G.
Fix a dense domain D and let D∗ be the algebraic dual of D, that is, linear
functionals on D with the topology of pointwise convergence of nets. We
define the rigging map

η : D → D∗; f �→
∫

G

dν(g) < U(g)f, . > (4)

The reason for restricting the domain of η to a dense subset D of H is
that in general only then (4) defines an element of D∗.
The image of η are solutions to the constraints in the sense that9

[η(f)](U(g)f ′) = [η(f)](f ′) (5)

for all g ∈ G and all f ′ ∈ D. Notice that if we would identify the distri-
bution η(f) with the formal vector

η′(f) :=
∫

G

dν(g) U(g)f (6)

then its norm diverges unless ν is normalisable, that is, unless G is compact
so that η′(f) is not an element of H in general. However, formally we have
< η′(f), f ′ >= [η(f)](f ′) and thus

< U(g)η′(f), f ′ >=< η′(f), U(g−1)f ′ >= η(f)[U(g−1)f ′] =< η′(f), f ′ >
(7)

for all g, f ′. Thus formally U(g)η′(f) = η′(f) which shows that η′(f) is
a (generalised, since not normalisable) eigenvector of all the U(g) with
eigenvalue equal to one as appropriate for a solution to the constraints.
Hence (5) is the rigorous statement of the formal computation (7).
We define the physical inner product on the image of η by

< η(f), η(f ′) >phys:= η(f ′)[f ] (8)

and the physical Hilbert space is the completion of η(D) in the corre-
sponding norm.10

9 In general, given an operator O which together with its adjoint O† is densely
defined on D ⊂ H and preserves D we define the dual O′ on the algebraic dual
D∗ by [O′l](f) := l(O†f) for all f ∈ D.

10 Provided that (8) is positive semidefinite and with removal of zero norm vectors
understood.
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5. The spectral decomposition solution of the constraint can be seen as a spe-
cial case of group averaging in the sense that in case of a single self-adjoint
constraint ̂M we can indeed exponentiate it to obtain a one-parameter
unitary, Abelean group U(t) = exp(it̂M). The Haar measure in this case
would seem to be the Lebesgue measure dν(t) = dt/(2π). We then for-
mally have (we drop the label θ)

< η(f), η(f ′) >phys =
∫

R

dν(t) < U(t)f ′, f >

=
∫

R

dν(t)
∫

spec(̂M)

dμ(λ) e−itλ < f̃ ′(λ), f̃ (λ) >Hλ

=
∫

spec(̂M)

dμ(λ) < f̃ ′(λ), f̃ (λ) >Hλ

∫

R

dν(t) e−itλ

= c < f̃ ′(0), f̃(0) >H0 (9)

where c = [
∫

spec(̂M)
dμ(λ) δ(λ)]. This calculation is formal in the sense

that we have interchanged the sequence of the integrations. Also the con-
stant c can be vanishing or divergent which is one of the reasons why
group averaging is only formal. For instance in the case of a pure point
spectrum the appropriate measure is not the Lebesgue measure but rather
the Haar measure on the Bohr compactification of the real line. See [34]
for the details. However, at least heuristically one sees how these methods
are related.

This ends the outline of the quantisation programme. We now apply it to
general relativity.

4 Status of the Quantisation Programme
for Loop Quantum Gravity (LQG)

In this section we describe to what extent the canonical quantisation pro-
gramme has been implemented for general relativity, that is, we give the sta-
tus of loop quantum gravity. As an aside we sketch the historical development
of the subject. We will mostly consider pure gravity; matter coupling works
completely similar [38]. Also, in order to avoid technicalities about boundary
terms (which can be dealt with [38]) consider compact σ without boundary
unless stated otherwise.

4.1 Canonical Quantum Gravity before LQG

The canonical quantisation of general relativity in terms of the ADM variables
[4] culminated in the seminal work by DeWitt [39] which formally carried out
many of the steps outlined in the previous section. These crucial papers laid
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the foundations for a substantial amount of work on the canonical quantisation
of general relativity that followed. However, the stress is here on the word
formally. We mention just some problems with these pioneering papers.

1. Kinematics:
The Hilbert space representation used there was given in terms of a for-
mal path integral which must be called ill-defined by the standards of a
mathematical physicist. For instance, the “measure” was defined to be an
infinite Lebesgue measure [Dq] over a space of three metrics, an object
that does not exist mathematically; the integration space, which should
be given the appropriate structure of a measurable space was not specified
etc.

Nonetheless, if one defines the three metric operator as a multiplication
operator and the conjugate momentum operator as a functional differ-
ential operator times i�2P then one arrives at a formal representation of
the canonical commutation relations such that the canonical coordinates
are represented as formally symmetric operators. Moreover, the formal
Lebesgue measure is formally invariant under infinitesimal spatial diffeo-
morphisms.

2. Dynamics
2a. Spatial Diffeomorphism Invariance:

In order to solve the spatial diffeomorphism constraint one can assume
that wave functions are normalisable functionals of spatially diffeo-
morphism invariant functions of the tree metric such as integrals over
σ of scalar densities of weight one constructed from the metric, the
curvature tensor and all its covariant derivatives. In order that those
derivatives make sense one must assume that the functional integral is
over smooth three metrics. However, even if the wave function is, say,
of the form exp(− ∫

σ
d3x

√

det(q)) which is damped for large q then
the functional integral is ill-defined: Due to spatial diffeomorphism
invariance of the wave function and measure, the infinite volume of
Diff(σ) must be factored out. But even after that, the space of smooth
metrics is typically of measure zero with respect to the Gaussian type
measure [Dq] exp(−2

∫

σ
d3x

√

det(q)). Finally the function det(q) can
stay small while components of qab can become large, hence the expo-
nent has flat directions so that the integral also has divergent modes.
Hence the norm of these type of states are dangerously close to being
either plain infinite or plain zero.

2b. Hamiltonian Constraints
The infinite number of Hamiltonian constraints were formally given as
a functional differential equation of second order, which goes by the
famous name Wheeler–DeWitt equations. However, these “operators”,
which are really products of operator-valued distributions multiplied
at the same point in σ, are hopelessly divergent on the space of wave
functions just specified where the divergence really orginates from
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the product of operator-valued distributions. There was no “normal
ordering” or renormalisation possible because no exact vaccum state
could be found with respect to which one should normally order.

It is therefore fair to say that canonical quantum gravity got stuck at the level
of [39] in the mid-1960s.

4.2 The New Phase Space

In a sense, in terms of the ADM variables one could never even find a proper,
background-independent representation of the canonical commutation rela-
tions. Thus, even leaving the dynamics aside, one could never even finish the
kinematical part of the programme.

With the advent of the new variables [40] there was new hope. Initially
the new variables consisted, instead of a three metric and (essentially) the
extrinsic curvature as a canonical pair, of an SL(2,C) connection AC and an
imaginary sl(2,C) valued, pseudo-two-form11 EC. This was attractive because
the Hamiltonian constraint, after multiplying it with the non-polynomial fac-
tor12

√

det(q), becomes a fourth order polynomial H̃ =
√

det(q)H in terms
of AC, EC which is no worse than in Yang–Mills theory. Hence the dynamics
seemed to be drastically simplified as compared to the ADM formulation with
its non-polynomial Hamiltonian constraint.

The catch, however, was in the reality conditions: Namely, in order to deal
with real rather than complex general relativity one had to impose the reality
conditions

AC + AC = 2Γ, EC + EC = 0 (1)

where Γ is spin connection of the triad e determined by the three metric. Since
essentially EC = −i

√

det(q)e it follows that Γ and thus (1) take a highly non-
polynomial form. In fact, Γ is a fraction whose numerator and denominator
are homogeneous polynomials of degree three in EC and its first partial deriva-
tives. It is clear that to find a representation of the formal ∗−algebra A with
(1) as ∗−relations is hopeless and to date nobody was successful.

Despite this, in [41, 42] an honest representation for a canonical theory
based on an SU(2) connection A and a real su(2) valued pseudo-two-form
E was constructed.13 More precisely, [41] constructs a measurable space of
generalised (distributional) connections A which turns out to be the Gel’fand
spectrum of an Abelean C∗–subalgebra of the corresponding kinematical alge-
bra A. In [42] a (regular, Borel, probability) measure μ0 on A was constructed.
11 A pseudo-two-form is dual, via the totally antisymmetric, metric-independent

symbol, to a vector density.
12 The determinant of the three metric is required to be everywhere non-vanishing

classically, hence the modified constraint captures the same information about
the reduced phase space as the original one.

13 That in this representation the pseudo-two-form is indeed an essentially self-
adjoint operator-valued distribution was only shown later in [43].
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Thus, the corresponding Hilbert space H := L2(A, dμ0) is a space of square
integrable functions on A. As expected [44], the space of classical (smooth)
connectionsA is contained in a measurable subset ofA of measure zero. Hence,
any (formal) state which requires to be restricted to smooth connections in
order that, say the Hamiltonian constraint be defined on it, has zero norm and
thus can be discarded from H. For the first time, these and related questions
could be answered with absolute precision.

However, what does this Hilbert space have to do with general relativity if
the true phase space is in terms of SL(2,C) plus complicated reality conditions
rather than SU(2) with simple reality conditions? In [45] it was pointed out
that the Hilbert space H can still be considered as a representation space for
the quantum kinematics of general relativity. In fact, the connection A and
pseudo-two-form E are related to triad e and extrinsic curvature K by14

Aja = Γ ja + βKabe
b
j , Ea

j =
√

det(q)eaj /β (2)

where a, b, c, .. = 1, 2, 3 are spatial tensor indices, where j, k, l, .. = 1, 2, 3
are su(2) Lie algebra indices and the real number β is called the Immirzi
parameter [46]. For any (non-vanishing) value of β, the variables (A,E) are
canonically conjugate and thus can be used as a kinematical starting point
for the quantisation programme.

The price to pay is that, in order to keep it polynomial, one has to multiply
the Hamiltonian constraint (which of course depends explicitly on β) by a
sufficiently large power of det(q) = | det(E)|. This was considered to be rather
unattractive because these very high degree polynomials would intuitively
drastically worsen the UV singularity structure of the Hamiltonian constraint
as compared to the ADM formulation. In fact, this UV problem was already
noticed at a rather formal level with the quantum version of H̃ in terms of the
complex variables [47]: All the formal solutions to the Hamiltonian constraint
were solutions at the regularised level only (in some ordering). When taking
the (point splitting) regulator away, the result would be of the type zero times
infinity. These problems were expected to even worsen when increasing the
polynomial degree of the Hamiltonian constraint. Hence, the initial excitement
that formally Wilson loop functions of smooth and non-intersecting loops were
formally annihilated by the Hamiltonian constraint dropped significantly.

Hence, a critic could have said at this point,

You have made the theory more complicated and you have not gained
anything: You may have a rigorous kinematical framework but that
framework does not support the quantum dynamics of the theory.

In [48] it was demonstrated how these obstacles can be overcome:
One can show that general relativity or any other background-independent
quantum field theory is UV self-regulating provided one equips the Hamilto-
nian constraint with its natural density weight equal to one as it automatically
14 If the SU(2) Gauss law holds.
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appears in the classical analysis. Notice that the Hamiltonian of the standard
model on Minkowski space has density weight two rather than one. This is
the reason why in background-dependent quantum field theories UV singular-
ities appear. One can intuitively understand this as follows: In background-
dependent theories, Hamiltonians are spatial integrals over sums of products
of operator-valued distributions evaluated at the same point. Such products
are therefore divergent. In background-independent theories such polynomials
P also appear; however, they appear as numerators in a fraction P/Q. The
denominator Q of that fraction is an appropriate power of

√

det(q) such that
P/Q is a scalar density of weight one. As one can show, if the numerator has
the singularity structure of the (n + 1)th power of the δ-distribution15 (and
its spatial derivatives) then the denominator has the singularity structure of
the nth power. This must be the case in order that the oparator valued dis-
tribution has the correct density weight. Hence, in a proper (point splitting)
regularisation of P/Q one can, intuitively speaking, “factor out” out n of those
δ-distributions and one is left with a well-defined integral after removing the
regulator.

In other words, it was wrong to assume that the Hamiltonian constraint
should be polynomial. Rather, it must be non-polynomial in order that it is
well defined. Of course, the details are not as simple as that and we will explain
the open issues in the next section. However, even at this stage one can say,

What has been gained is that not only a rigorous kinematical frame-
work has been erected, that framework also supports the quantum dy-
namics. In particular, the original problem of the reality conditions is
completely resolved.

One of the most important issues is whether that dynamics defined by the
final, regulator free, Hamiltonian constraint operator, which underwent rather
non-trivial regularisation steps until one removed the regulator, reduces to the
classical one in an appropriate classical limit. We will have much to say about
this point in subsequent sections.

Before we close this section, let us comment on some criticism that one
might have encountered [49, 50]: The complex connection is actually the pull-
back to σ of the (anti) self-dual part of the 4D spin connection. Hence it
has a covariant interpretation. The real valued connection is not related to a
covariant action as simply as that. The relation is as follows: Additional to
the Palatini action one considers a term which is topological on shell which
amounts to the total action

S =
∫

M

FIJ ∧ ∗(eI ∧ eJ) +
1
β

∫

M

FIJ ∧ (eI ∧ eJ) (3)

Here I, J,K, .. = 0, 1, 2, 3 are Lorentz indices, eI is the cotetrad one form
and FIJ is the curvature for a Lorentz connection AIJ . The first term in (3)
15 Notice that the δ-distribution δ(x, y) transforms as a density of weight one in say
x and as a scalar in say y.
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is the Palatini action. The second term is a total derivative when substitut-
ing the equation of motion for the connection AIJ . Now when performing
the Legendre transform of (3) one encounters second-class constraints [26].
These must be eliminated by using the Dirac bracket or by partially fixing
the Lorentz gauge symmetry SO(1, 3) (or its universal cover SL(2,C)) to
SO(3) (or SU(2)) respectively, called the time gauge.

Using the Dirac bracket leads to a Poisson structure with respect to which
connections are not Poisson commuting. Hence, while manifestly originating
from a covariant action, the Lorentz connections cannot be used as a con-
figuration space in the quantisation programme, that is, they cannot be rep-
resented as (commuting) multiplication operators [50]. In fact, to date there
is no honest representation based on Lorentz connections available. On the
other hand, the time gauge immediately leads to the phase space description
sketched above with Immirzi parameter β. The manifest covariant origin of
the phase space is lost due to the gauge fixing of the Lorentz group [49], how-
ever, one can show easily [2, 3] that symplectic reduction with respect to the
SU(2) Gauss constraint results in the manifestly covariant ADM phase space.
Hence, both criticisms are of purely aesthetical nature and do not give rise to
either an obstacle or an insight concerning the quantisation.

4.3 Quantum Kinematics

Elementary Functions

Having convinced ourselves that the cotangent bundle M := T ∗(A) over
the space of smooth SU(2) connections is an appropriate kinematical phase
space of general relativity we are supposed to choose an appropriate Pois-
son ∗−subalgebra E of elementary functions. Experience from lattice gauge
theory [51] shows that it is convenient to work with SU(2) valued magnetic
holonomies

A(e) := P exp(
∫

e

A) (4)

and real valued electric fluxes

Ef (S) :=
∫

S

Tr(n ∗ E) (5)

Here e is a path in σ, S is a two surface in σ and n is a Lie algebra val-
ued scalar.16 These functions separate the points of M since G = SU(2) is
compact [52]. Moreover, they satisfy the reality conditions

A(e) = [A(e−1)]T , En(S) = En(S) (6)

16 For simplicity we assume that the SU(2) principal bundle is trivial which is
always possible. The final quantum theory turns out not to be affected by this
assumption. The paths and surfaces are piecewise analytic for technical reasons.
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as well as the Poisson brackets

{A(e), A(e′)} = 0 , {Ef(S), A(e)} = 8πGNewtonβA(e1)f(S ∩ e)A(e2) (7)

Here we have assumed that e and S intersect transversally in an interior
point of both S, e thus splitting the path e at S ∩ e as e = e1 ◦ e2 and G is
Newton’s constant. Similar formulae can be derived if S, e intersect in a more
complicated way.

The algebra E can now be described as follows: Consider the algebra
Cyl of cylindrical functions, that is, those which depend on a finite num-
ber of holonomies only. Hence, a cylindircal function is of the form f(A) =
fγ({A(e)}e∈E(γ)) where γ is an oriented graph (a collection of paths, called
edges, which intersect in their end points only), E(γ) denotes the set of edges
of γ and fγ is a complex valued function on SU(2)N where N is the number
of edges of γ. Next, consider the vector field uS,n, considered as a derivation
on Cyl, defined by

uS,n[f ] := {En(S), f} =
∑

e∈E(γ)

{En(S), [A(e)]mn} ∂fγ
∂[A(e)]mn

(8)

The algebra E is now defined as the Lie algebra generated by the pairs (f, u)
where f ∈Cyl and u is a derivation on Cyl which is either of the form of a
finite linear combinations of the un,S or which is generated from those by the
Lie bracket {(f, u), (f ′, u′)} = (u[f ′] − u′[f ], [u, u′]) where [u, u′] denotes the
commutator of vector fields.

Notice that, in this sense, the Poisson bracket between the En(S) is gener-
ically non-vanishing. Its result is such that, formally, the Jacobi identity holds
in E. The reason for this is that we do not smear the fields in three but in
less dimensions. If we would smear in three dimensions as usual, then the
smeared electric fields would Poisson commute. See [55] for more details on
this point. The reason for why we do not smear the fields in three dimensions
is due to the fact that it is natural in a background-independent theory to
smear one form in one dimension and two forms in two dimensions. This way
we do not need a background metric in order raise or lower indices. Moreover,
our holonomies and fluxes transform in a simple way under the kinematical
part of the gauge group, that is, SU(2) gauge transformations and spatial
diffeomorphisms. In fact, consider the smeared Gauss constraint and spatial
diffeomorphism constraint respectively given by

G(Λ) :=
∫

σ d3x Λj Gj , D(v) :=
∫

σ d3x va Ca (9)

(where Λ, v are test functions) where17

Gj = Tr(τjDaEa) , Da = Tr(FabEb) (10)
17 D and F are respectively the covariant differential and curvature determined by
A and τj , j = 1, 2, 3 denotes a basis of su(2).
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and the one-parameter families of canonical transformations generated by
them. These are explicitly given by, say on f ∈ Cyl,

αexp(tΛ)(f) :=
∞
∑

n=0

tn

n!
{C(Λ), f}(n)

αϕt
v
(f) :=

∞
∑

n=0

tn

n!
{C(v), f}(n) (11)

where b(e), f(e) denote respectively the beginning and final point of e. Here
t �→ ϕtv is the one-parameter family of diffeomorphisms generated by v. It is
not difficult to see that (11) is the restriction to local gauge transformations of
the form g = exp(tΛ) and spatial diffeomorphisms of the form ϕ = ϕtv of the
following action of the semidirect product G = G � Diff(σ) on Cyl given by

[αg(f)](A) = fγ({g(b(e))A(e)g(f(e))−1}e∈E(γ))
[αϕ(f)](A) = fγ({A(ϕ(e))}e∈E(γ)) (12)

There is a similar action on the vector fields un,S. As the notation suggests,
the maps αg, αϕ are automorphisms of E, that is, α.({a, b}) = {α.(a), α.(b)}
for any a, b ∈ E as one can easily verify. Hence we have a representation of G
as automorphisms on E.

Quantum ∗−Algebra

We follow the standard construction of Sect. 3:
Consider the free ∗−algebra F generated by E. That is, we consider finite linear
combinations of “words” w constructed from E. A word is simply a formal
finite sequence w = (a1..aN ) of elements ak of E. Multiplication of words is
defined as w · w′ = (a1..aNa′1..a

′
N ′) where w = (a1..aN ), w′ = (a′1..a

′
N ′). The

∗operation on F is w∗ = (āN ..ā1).
Consider the two-sided ideal I in F generated by elements of the form

(a) · (b)− (b) · (a)− i�({a, b}) (13)

for all a, b ∈ E. Then the quantum ∗−algebra is defined as the quotient

A := F/I (14)

We can now simply lift the automorphisms labelled by G from E to A by
α.(w) = (α.(a1)..α.(aN ).

Representations of A

In quantum field theory, representations of A are never unique in contrast
to the situation in quantum mechanics where the Stone–von Neumann theo-
rem guarantees that irreducible and weakly continuous representations of the
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Weyl algebra generated by the unitary operators U(x) = exp(ixq), V (y) =
exp(iyp), x, y ∈ R are automatically unitarily equivalent to the Schrödinger
representation. For example, an appeal to Haag’s theorem [6] reveals that Fock
representations for free massive scalar fields with different masses are unitarily
inequivalent representations of the corresponding Weyl algebra. Hence already
in this simplest case we have an uncountably infinite number of unitarily in-
equivalent representations of the canonical commutation relations and all of
them satisfy the Wightman axioms, e.g. Poincaré invariance. In order to single
out preferred representations one must use additional criteria from physics.
In the case of the scalar field, the representation is fixed if we insist on the
Wightman axioms plus specifying the mass of the scalar field. Hence we need
dynamical input as pointed out in [56].

In the case of our algebra A the idea is to use dynamical input from the
kinematical gauge algebra A. Namely, we want a unitary representation of G
on the Hilbert space. To do this, recall that for any ∗−algebra such as our A
it is true that any representation is a (possibly uncountably infinite) direct
sum of cyclic representations. Hence it is sufficient to consider cyclic represen-
tations. Next, any cyclic representation is in one-to-one correspondence with
a state ω on A via the GNS construction [6]. Here a state is defined as a
positive linear functional on A, that is, ω(w∗w) ≥ 0 for all w ∈ A. It is not
to be confused with vectors, that is, elements of some Hilbert space. Hence,
it suffices to consider states on A.

The physical input to have a unitary representation of A on the GNS
Hilbert space Hω determined by ω now amounts to asking that the state
ω be G-invariant. To see this we have to recall some elements of the GNS
construction.

The GNS construction means that there is a one-to-one correspondence
between states ω on a (unital) ∗−algebra A and GNS data (Hω , π(ω), Ωω).
Here Hω is a Hilbert space, πω is a representation of A by densely defined
and closable operators on Hω and Ωω is a cyclic vector in Hω. Cyclic means
that πω(A)Ωω is dense in Hω. This is done as follows: Consider the subspace
of A (considered as vector space) defined by J := {w ∈ A; ω(w∗w) = 0}. It is
not difficult to show that this is a left ideal. Consider the equivalence classes
[w] := {w + w′;w′ ∈ J}. Then Hω is the closure of the vector space A/J of
equivalence classes, Ωω := [1] and πω(w)[w′] := [ww′]. The scalar product is
defined as < [w], [w′] >Hω := ω(w∗w′). Now if ω is in addition G invariant then
by using the automorphism property it is easy to see that Uω(g)[w] := [αg(w)]
is a unitary representation of G with G-invariant cyclic vector Ωω.

The surprising result is now the following structural theorem [57].

Theorem 4.1. The only G-invariant state on the holonomy–flux algebra A is
the Ashtekar–Isham–Lewandowski state ωAIL whose GNS data coincide with
the Ashtekar–Isham–Lewandowski representation.

The surprising aspect to this theorem is that not the full gauge symmetry
of the theory associated with the Hamiltonian constraint had to be used. In
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fact it is actually sufficient to just use the spatial diffeomorphism invariance
in order to prove the theorem.18

The assumptions of the theorem are fairly weak as one can see. A pos-
sible generalisation is as follows: We have implicitly assumed that the flux
operators themselves exist as self-adjoint operators on the Hilbert space. This
is equivalent to asking that the state is regular, that is, weakly continuous
with respect to the one parameter unitary groups they generate. This need
not to be the case. In [58] it was shown that including non-regular states into
the analysis does not change the uniqueness result modulo a slight additional
assumption that one has to make. This is to say that the uniqueness result
is fairly robust. It is rather important in the following sense: Suppose we had
found a multitude of representations which satisfy the physical criterion of
G-invariance. Then each of them would be a bona fide kinematical starting
point for the Dirac quantisation programme which would amount to a large
amount of ambiguity. The uniqueness result excludes this possibility and we
can thus be confident to use the Hilbert space HAIL.

The Kinematical Hilbert Space and Its Properties

There are several complementary characterisations of the kinematical Hilbert
space H := Hω which are useful in different contexts. This section is for the
mathematically inclined reader and can be skipped by readers interested only
in the conceptual framework.

1. Positive linear functional characterisation
We notice first of all that every word w can be written, using the commu-
tation relations (7), (13) as a finite linear combination of reduced words.
A reduced word is of the form fun1S1 ..unNSN with f ∈Cyl and arbitrary
nk, Sk and N = 0, 1, ... Due to linearity it suffices to specify ω on reduced
words. The definition is

ω(w) =
{

0 if N > 0
ω0(f) if N = 0 (15)

Here ω0 is the so-called “Ashtekar–Lewandowski positive linear func-
tional” on the C∗−algebra completion Cyl of Cyl with respect to the
sup norm. It can be explicitly written as

ω0(f) =
∫

SU(2)n

dμH(h1)..dμH(hn) fγ(h1, .., hn) (16)

18 The careful statement of the theorem uses semianalytic rather than smooth struc-
tures on σ. For every smooth structure there is always a semianalytic structure
and semianalytic charts are equivalent up to smooth diffeomorphisms. Semian-
alyticity is the rigorous formulation of the more intuitive notion of piecewise
analyticity. See [57] for details.
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for f(A) = fγ(A(e1), .., A(en), that is, f cylindrical over a graph with n
edges. Here μH is the Haar measure on SU(2). The Hilbert space H is the
GNS Hilbert space derived from (15).

2. C∗–algebraic characterisation
The completion Cyl of Cyl with respect to the sup norm ||f || :=
supA∈A |f(A)| defines an Abelean C∗–algebra [59]. Define the space of gen-
eralised connections A as its Gel’fand spectrum19 Δ(Cyl) [59], also called
the Ashtekar–Isham space of generalised connections. By the Gel’fand iso-
morphism we can think of Cyl as the space C(A) of continuous functions
on the spectrum. The spectrum of an Abelean C∗–algebra is a compact
Hausdorff space if equipped with the Gel’fand topology of pointwise con-
vergence of nets. Hence, by the Riesz–Markov theorem [60] the positive
linear functional ω0 in (16) is in one-to-one correspondence with a (regu-
lar, Borel) measure μ0 on A also called the Ashtekar–Lewandowski mea-
sure. The Hilbert space H := L2(A, dμ0) is the space of square integrable
functions on A with respect to that measure.

3. Projective limit characterisation
The spectrum of Cyl abstractly defined above can be given a concrete
geometric interpretation. It can be identified set theoretically and topo-
logically as the set of homomorphisms from the groupoid P of paths into
SU(2), that is, there is a homeomorphism A → Hom(P , SU(2)) [61]. Here
the groupoid of paths is defined, roughly speaking, as the set of (piecewise
analytic) paths modulo retracings and reparametrisations together with
the operations of (1) connecting paths with common beginning or end
point and (2) inversion of orientation. Now recall that an element A ∈ A
is a homomorphism from Cyl into the complex numbers. Consider a func-
tion f ∈Cyl cylindrical over some graph γ. Since A is a homomorphism
we have A(f) = fγ({A(he)}e∈E(γ)) where for A ∈ A, he(A) = A(e) is
the holonomy map. Hence it suffices to consider the action of A ∈ A on
holonomy maps. Now since hehe′ = he◦e′, h−1

e = (he)−1 and A is a homo-
morphism it follows that every point in the spectrum defines an element
of Hom(P , SU(2)). That also the converse is true is shown, e.g., in [62],
hence there is a bijection.

To see that this bijection is a homeomorphism we must specify
a topology on Hom(P , SU(2)). To do this, we describe the space
Hom(P , SU(2)) as a projective limit: For every graph γ we consider the
space Hom(γ, SU(2)) of homomorphisms from the subgroupoid of paths
within γ (also denoted γ) into the gauge group. Since such homomor-
phisms are completely specified by their action on the edges of the graph,
the sets Hom(γ, SU(2)) are identified topologically with SU(2)n where n
is the number of edges of the graph. As such, Hom(γ, SU(2)) is a com-
pact Hausdorff space. The set of subgroupoids is partially ordered and
directed with respect to the inclusion relation, that is, for any two γ, γ′

19 That is, the set of all homomorphisms from the algebra into the complex numbers.
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there is γ̃ (e.g. γ ∪ γ′) such that γ, γ′ ⊂ γ̃. Given γ ⊂ γ′ we say that
Aγ′ ∈ Hom(γ′, SU(2)) is compatible with Aγ ∈ Hom(γ, SU(2)) provided
that the restriction of Aγ′ to γ coincides with Aγ , that is, Aγ′|γ = Aγ .
The projective limit Hom(P , SU(2)) (of the spaces Hom(γ, SU(2))) is
the (automatically closed) subset of the infinite direct product X of the
Hom(γ, SU(2)) restricted to the compatible points. The space X carries
the natural Tychonov topology [63] with respect to which it is compact and
Hausdorff. This property is inherited by the closed subset Hom(P , SU(2))
in the subspace topology. As one can show, the compact Hausdorff topolo-
gies on A and Hom(P , SU(2)) are identified by the above mentioned bi-
jection A �→ (A|γ)γ where A|γ is the restriction of A to γ.

Also the measure μ0 abstractly defined via the Riesz–Markov theorem
can be given a nice projective description: On each subgroupoid γ we con-
sider the product Haar measure μ0,γ as in (16). Let pγ: Hom(P , SU(2))→
Hom(γ, SU(2)); A �→ A|γ be the restriction map. The system of measures
μ0,γ satisfies the following compatibility condition: For every γ ⊂ γ′ we
have

∫

dμ0,γ′fγ =
∫

dμ0,γfγ for every f = fγ ◦ pγ cylindrical over γ. This
property qualifies the μ0,γ as the cylindrical projections [64] μ0,γ = μ0◦p−1

γ

of a measure on the projective limit. Here the translation invariance and
normalisation of the Haar measure are absolutely crucial to establish this
property.

4. Inductive limit characterisation
We consider the Hilbert spaces Hγ(Hom(γ, SU(2)), dμ0,γ). For every
γ ⊂ γ′ there is an isometric embedding Uγγ′ : Hγ → Hγ′ . These isome-
tries satisfy Uγγ̃ = Uγ′γ̃Uγγ′ for all γ ⊂ γ′ ⊂ γ̃. This qualifies the Hγ as
an inductive system of Hilbert spaces. The Hilbert space H is the corre-
sponding inductive limit.

It is not difficult to show that this representation of A is irreducible [65].
Moreover, it turns out that the Hilbert space H has an orthonormal basis over
which one has complete control, the spin network basis [66]. These provide
an indispensible tool in all analytical calculations in LQG. A spin network
(SNW) is a quadruple20 s = (γ, j,m, n) consisting of a graph γ, a collection
of spin quantum numbers j = {je}e∈E(γ) and two collections of magnetic
quantum numbers m = {me}e∈E(γ), n = {me}e∈E(γ) subject to the conditions
je = 1/2, 1, 3/2, .. and me, ne ∈ {−je,−je+1, .., je}. The analytical expression
for a spin network function (SNWF) is given by (we write A(e) := A(he) for
A ∈ A)

Ts(A) :=
∏

e∈E(γ)

√

2je + 1 [πje(A(e))]mene (17)

20 It is understood that at bivalent vertices such that the incident edges are at
least C(1) continuations of each other, then in the intertwiner decomposition of
the state (see below) no trivial representation occurs. Otherwise this leads to an
overcounting problem. Hence, if the intertwiner is trivial then such points are not
counted as vertices.
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Here πj is the spin j irreducible representation of SU(2). Its dimension is
2j + 1 and we label the entries of the corresponding matrices by [π(h)]mn.

Three important properties of H follow from the existence of the SNW
basis:

1. Since the set of finite graphs is an uncountably infinite set, the kinematical
Hilbert space is therefore non-separable since it does not have a count-
able basis.

2. Consider a vector field v on σ and let t �→ ϕvt be the one-parameter fam-
ily of spatial diffeomorphisms generated by it.21 Then the one-parameter
unitary group t �→ U(ϕvt ) is not weakly continuous, that is, it does not
hold that limt→0 < ψ,U(ϕut )ψ

′ >=< ψ,ψ′ > for all ψ, ψ′ ∈ H. To see
this choose ψ = ψ′ = Ts such that the graph γ underlying s has support
in the support of v. Then < Ts, U(ϕvt )Ts >= 0 for all ε > |t| > 0 for some
ε because U(ϕ)Ts = Tϕ·s where ϕ · s = (ϕ(γ), j,m, n) if s = (γ, j,m, n).
By Stone’s theorem [67] this means that the infinitesimal generators of
spatial diffeomorphisms do not exist as (self-adjoint) operators on H.

3. On SNWFs the operators A(e) act by multiplication while En,S := un,S

becomes a linear combination of the right invariant vector fields Xj
e =

Tr([τjA(e)]T ∂/∂A(e)) on a copy of SU(2) coordinatised by A(e).

4.4 Quantum Dynamics

The quantum dynamics consists of two steps: (1) Reduction of the system
with respect to the gauge transformations generated by the constraints and
(2) Introduction of a notion of time with respect to which observables (gauge
invariant operators) evolve. It is convenient to subdivide the discussion of the
reduction step into the gauge transformations corresponding to G and those
generated by the Hamiltonian constraint. We will also mention spin foam
models which are the path integral formultion of LQG. Spin foam models
were completely neglected in [12] although half of the current activity in LQG
is devoted to them. This was partly corrected in [13]. The presentation will
be brief since our main focus is on the criticisms of [12] towards the canonical
formulation.

Reduction of Gauss– and Spatial Diffeomorphism Constraint

Gauss Constraint

The SNWF are not invariant under G. It is easy to make them gauge invariant
as follows: Pick a vertex v ∈ V (γ) in the vertex set of γ and consider the edges
e1, .., eN incident at it. Let us assume for simplicity that the edges are all out-
going from v, the general case is similar but requires more book keeping. It is
21 These are obtained by computing the integral curves cvx(t) defined by ċvx(t) =
v(cvx(t)), cvx(0) = x and setting ϕv

t (x) := cvx(t).
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easy to see that at v the state transforms in the tensor product representation
j1⊗ ..⊗ jn where jk := jek . Hence in order to make the state gauge invariant,
all we need to do is to couple the N spins j1, .., jN to resulting spin zero. This
is familiar from the quantum mechanics of the angular momentum: We begin
with

|j1m1 > ⊗|j2m2 >=
∑

j12

< j12m1 + m2|j1m1; j2m2 > |j12m1 + m2 > (18)

The recoupling quantum numbers take range in j12 ∈ {|j1 − j2|, .., j1 + j2}
and < j12m1 + m2|j1m1; j2m2 > is the familiar Clebsch–Gordan coeffi-
cient (CGC). Next we repeat (18) with the substitutions (j1,m1; j2,m2) →
(j12,m1 + m2; j3,m3).

The procedure is now iterated until all spins have been recoupled to total
angular momentum J = 0 and total magnetic quantum number M = m1 +
..+mN = 0. Consider the corresponding coefficients < j1m1; ..; jNmN |JM >
in the decomposition of |j1m1 > ⊗.. ⊗ |jNmN > into the |JM >. As we
just showed, these can be written explicitly as polynomials of CGCs. We are
interested only in those coefficients with J = 0, called intertwiners Iv. This
imposes some restriction on the range of the jk in order that this is possible
at all. The number of those intertwiners does not depend on the sequence in
which we couple those spins which is called a recoupling scheme. Different
recoupling schemes are related by a unitary transformation. We now take
one of those intertwiners and sum the SNWF times the intertwiner over all
mk ∈ {−jk, .., jk}. The result is a state which is gauge invariant at v. Now
repeat this for all vertices.

The resulting states are gauge invariant and orthonormal with respect to
the kinematical inner product by the properties of the CGCs and they define
an orthonormal basis of the G invariant Hilbert space. We will also denote
them by Ts where now s = (γ, j, I) and I = {Iv}v∈V(γ).

Spatial Diffeomorphism Constraint

While the solutions to the Gauss constraint were normalisable with respect
to the kinematical inner product, this turns out to be no longer the case
with respect to the spatial diffeomorphism constraint. Let D be the finite
linear span of SNWFs which by construction is dense in H. We will look for
solutions to the spatial diffeomorphism constraint in the algebraic dual D∗ of
D. The algebraic dual of D are simply linear functionals on D equipped with
the topology of pointwise convergence of nets (weak ∗−topology). It is clear
that an element l ∈ D∗ is completely specified by the numbers ls := l(Ts).
Hence we can write any element of D∗ formally as the uncountable direct sum

l =
∑

s

ls < Ts, . > (19)

where the sum is over all gauge-invariant spin network labels.
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Following the group-averaging technique described earlier, we say that an
element l ∈ D∗ is spatially diffeomorphism invariant provided that

l(U(ϕ)f) = l(f) (20)

for all ϕ ∈Diff(σ) and all f ∈ D. As we have seen, this definition is a direct
generalisation from vectors ψ ∈ H to distributions of the equation U(ϕ)ψ = ψ
for all ϕ ∈Diff(σ). The latter equation has only one solution (up to a constant)
in H, namely ψ = Ωω = 1, the trivial spin network state.

In order to see what this requirement amounts to we notice that it is
sufficient to restrict attention to the f = Ts. Let [s] = {ϕ · s; ϕ ∈ Diff(σ)} be
the orbit of s. Then it is not difficult to see that (20) amounts to asking that
ls = ls′ whenever [s] = [s′]. Thus ls = l[s] just depends on the orbit and not
on the representative. It is therefore clear that no non-zero solution except
for the vector 1 is normalisable with respect to the kinematical inner product
< l, l′ >:=

∑

s lsl
′
s. Interestingly, the solutions are labelled by generalised

knot classes where generalised refers to the fact that we allow for knots with
intersections. Any solution obviously is a linear combination of the elementary
solutions T[s] :=

∑

s′∈[s] < Ts′ , . >.
We therefore have to define a new inner product on the solution space

D∗
Diff . This can be systematically done using the group-averaging technique

described in Sect. 3. The only known Haar measure on Diff(σ) is the counting
measure. Indeed, it is almost true that T[s] coincides with the image of the
rigging map

η(Ts) :=
∑

ϕ∈Diff(σ)

< U(ϕ)Ts, . > (21)

if it was not for fact that Diff(σ) contains an uncountably infinite num-
ber of elements which have trivial action on any given s. These trivial ac-
tion diffeomorphisms form a subgroup (but not an invariant one) but that
subgroup evidently depends on s. Hence one cannot take a universal factor
group (rather: coset) for the averaging in order to get rid of the associated
infinity. However, we notice that formally η(Ts)[T ′

s] = 0 whenever [s] �= [s′].
Hence it is justified to decompose the kinematical Hilbert space into the direct
sum of Diff(σ) invariant subspaces H[γ] consisting of the finite linear span of
SNWFs over the graphs γ′ in the orbit [γ] of γ. The group averaging can now
be done on these subspaces seperately because in any case their images under
(21) would be orthogonal. This is done by identifying a subset Diff[γ](σ) which
is in one-to-one correspondence22 with the points in [γ]. When restricting (21)
only to those diffeomorphisms and a discrete set of additional graph symme-
tries23 then we indeed get η(Ts) = k[s]T[s] where k[s] is a positive constant

22 That is, fix a representative γ0 in every orbit and select diffeomorphisms which
map γ0 to every point in the orbit.

23 These are diffeomorphisms which leave the range of the representative γ0 invariant
but permute the edges among each other.
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which is of the form of a positive number k[γ(s)] times an integer which is
the ratio of the orbit sizes of the least symmetric [s′] with [γ(s′)] = [γ(s)]
and the orbit size of [s]. See [43] for the details. It follows that the spatially
diffeomorphism invariant inner product is determined by

< T[s], T[s′] >Diff=
1

k[s]k[s′]
< η(Ts), η(Ts′) >Diff=

1
k[s]k[s′]

η(Ts′)[Ts] =
δ[s],[s′]

k[s]

(22)

Notice, however, that the relative normalisation of the T[s] is only fixed for
those s which have diffeomorphic underlying graphs because we applied the
averaging to all those “sectors” separately. In order to fix the normalisations
between the sectors one needs to consider diffeomorphism invariant operators
which are classically real valued and map between these sectors and require
that they be self-adjoint (or at least symmetric).

Finally we mention that HDiff just like H is still not separable because the
set of singular knot classes [γ] has uncountably infinite cardinality [68]. This
is easy to understand from the fact that the group of semianalytic diffeomor-
phism reduces to GL(3,R) at each vertex. Hence, for vertices of valence higher
than nine one cannot arbitrarily change, in a coordinate chart, all the angles
between the tangents of the adjacent edges. It turns out that valence five is
already sufficient, that is, there are diffeomorphism invariant “angles”, called
moduli θ in all vertices of valence five or higher. There are several proposals
for an enlargement of the group of diffeomorphisms [69–71]; however, these
groups do not interact well with certain crucial operators in the theory such as
the volume operator which depend on at least C(1)(σ) structures while those
extensions basically replace diffeomorphisms by homeomorphisms or even mor
general bijective maps on σ. We will see, however, that the non-separability
of HDiff is immaterial when we pass to the physical Hilbert space Hphys.

Reduction of the Hamiltonian Constraint

The informed reader knows that the implementation of the Hamiltonian con-
straint is the most important technical problem in canonical quantum gravity
ever since. The source of these technical problems within LQG can be appre-
ciated when recalling the Dirac algebra D (2):

1. The first relation in (2) means that diff(σ) is a subalgebra. However, the
second relation says that this subalgebra is not an ideal. In other words,
the Hamiltonian constraints are not spatially diffeomorphism invariant.
In particular, if there is a quantum operator ̂H(N) associated with H(N)
then it cannot be defined on HDiff . We stress this simple observation here
because one often hears statements saying the contrary in the literature.
Spatially diffeomorphism invariant states do play a role but a quite dif-
ferent one as we will see shortly. The constraint operators ̂H(N) must be
defined on the kinematical Hilbert space H and nowhere else. One could
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try, as suggested in [72, 73] to define the dual ̂H ′(N) of the constraint
operator on some subspace D∗

� of D∗ invariant under the ̂H ′(N) via

[ ̂H ′(N)l](f) := l( ̂H(N)†f) (23)

for all f ∈ D. However, in order to solve all constraints, eventually one
wants to restrict D∗

� to the space of spatially diffeomorphism invariant
distributions on which ̂H ′(N) is ill-defined. Hence the definition on H is
the only option.

2. We have seen that the kinematical Hilbert space is, under rather mild
assumptions, uniquely selected. In other words, there is no other choice.
Unfortunately, as we have seen, in this representation the diffeomorphisms
are not represented weakly continuously and there is no way out of this
fact. This poses a problem in representing (2) on H because evidently
(2) involves the infinitesimal generators D(N ) of spatial diffeomorphisms
which are obstructed to exist as quantum operators as we just have said.
As far as the first two relations in (2) are concerned, there is a substitute
involving finite (exponentiated) diffeomorphisms only. It is given by

U(ϕ)U(ϕ′)U(ϕ)−1 = U(ϕ ◦ ϕ′ ◦ ϕ−1)

U(ϕ) ̂H(N)U(ϕ)−1 = ̂H(N ◦ ϕ) (24)

Indeed, if ̂D(N) would exist then one parameter subgroups of spatial
diffeomorphisms would be given by U(ϕN

t ) = exp(it ̂D(N)/(�8πGNewton))
and then (24) would be equivalent to

[ ̂D(N), ̂D(N ′)] = i8πGNewton�
̂D(LNN ′)

[ ̂D(N), ̂H(N ′)] = i8πGNewton�
̂H(LNN ′) (25)

upon taking the derivative at t = 0.
3. In other words there is a finite diffeomorphism reformulation of the first

two relations in (2). However, this is no longer possible for the third
relation in (2). The problem is the structure function involved on the
right-hand side of this relation which prevents us from exponentiating
the Hamiltonian constraints. The commutator algebra of the Hamilto-
nian constraints is simply so complicated that the Dirac algebra D is no
longer a Lie group. Therefore we cannot exponentiate the third relation
in (2) and there seems to be no chance to find a substitute involving finite
diffeomorphisms only.

4. Even if the problem just mentioned could be solved, we would still have no
idea for how to find the physical inner product because group averaging
only works for Lie algebra valued constraints.

These remarks sound like an obstruction to implement the operator version
of the Hamiltonian constraint in LQG at all. In what follows we describe
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the progress that has been made over the past 10 years with regard to this
task. There are two constructions: The first, surprisingly, indeed proposes a
quantisation of the Hamiltonian constraints as operators on the kinematical
Hilbert space. The algebra of these operators is non-Abelean and closes in a
precise sense as we will see. We again stress this because one sometimes reads
that the Hamiltonian constraint algebra is Abelean [72, 73] which is simply
wrong. However, no physical scalar product using these operators has so far
been constructed due to the non-Lie algebra structure mentioned above. Also,
so far the correctness of the semiclassical limit of these constraint operators
has not been established, in particular it is unsettled in which sense the third
relation in (2) is implemented in the quantum theory.

To make progress on these two open problems, the construction of the
physical scalar product and the establishment of the correct classical limit
which are interlinked in a complicated way as we will see, the master constraint
programme was launched [19, 34, 35, 75]. We have outlined it already in Sect. 3
for a general theory and will apply it to the Hamiltonian constraints below.

This section is organised as follows:

The master constraint programme overcomes many of the shortcomings of the
Hamiltonian constraint and is the modern version of the implementation of the
Hamiltonian constraint in LQG. We will still describe first the old Hamiltonian
constraint programme [20, 38, 75] in order to address the criticisms spelled
out in [12] and because the quantisation technique in [19, 75] is still heavily
based on the key techniques developed in [20]. Indeed, without the techniques
developed in [20] the recent intriguing results of loop quantum cosmology
(LQC)24 [76] such as avoidance of the big bang singularity could never have
been achieved. A large amount of the success of LQC is a direct consequence
of [20].

Then we describe the master constraint programme which was not men-
tioned at all in [12] although it removes many of the criticisms stated there. In
particular we describe recent progress made in a particular version of the mas-
ter constraint programme called algebraic quantum gravity (AQG) [77] which
establishes that the master constraint operator has the correct semiclassical
limit. The work [77] also removes the criticism of [12] that no calculations
involving the book operator can be carried out in LQG. This, together with
the general direct integral construction of the physical inner product already
described make the master constraint programme a promising step forward
in LQG.

24 LQC is the usual homogeneous (and isotropic) cosmological model quantised by
LQG methods. It is not the cosmological sector of LQG because LQG is a quan-
tum field theory (infinite number of degrees of freedom) while LQC is a quantum
mechanical toy model (finite number of degrees of freedom) in which the inho-
mogeneous excitations are switched off by hand.
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Unfortunalely the subsequent discussion is rather complictaed because the
problems of anomaly freeness, semiclassical limit, dense definition, represen-
tation of the Dirac algebra etc. for the Hamiltonian constraints are interlinked
in a complex way. In order to appreciate these interdependencies we have to
go into some detail about the actual constructions. We will try our best at
keeping the discussion as non-technical as possible.

Hamiltonian Constraint

The task is to quantise the Hamiltonian constraints which on the new phase
space are given by25

H(N) =
∫

σ

d3x N(x)
Tr(FabE

aEb)
√| det(E)| (x) (26)

where N is a test function. The non-polynomial character of (26) is evident
and it is hard to imagine that there is any way to tame (26) when replacing
A,E by their operator equivalents.

We now sketch the key tools developed in [20]. Let Rx be any region in σ
containing x as an interior point, then

eja(x) = −{Aja(x), V (Rx)}/κ (27)

where κ = 8πGNewton and

V (Rx) :=
∫

Rx

d3y
√

| det(E)|(y) (28)

is the volume of the region Rx. Using the relation eaj = Ea
j /

√| det(E)| we can
rewrite (26) as

H(N) = − 1
κ

∫

σ

N(x) Tr(F (x) ∧ {A(x), V (Rx)}) (29)

where now all the dependence on E resides in the volume function V (Rx).
The point of doing this is that V (Rx) admits a well-defined quantisation
as a positive essentially self-adjoint operator26 ̂V (Rx) on H. Following the
rules of canonical quantisation one would then like to replace the Poisson
bracket between the functions appearing in (29) by the commutator between
the corresponding operators divided by i�.
25 This is only the simplest piece of the geometry part of the constraint, the remain-

ing piece as well as matter contributions can be treated analogously [38] and will
be neglected here for pedagogical reasons.

26 Actually there are two inequivalent volume operators [78, 79] which result from
using two different background-independent regularisation techniques. However,
in a recent mathematical self-consistency analysis [80] the operator [78] could be
ruled out.
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The problem is that the connection operator ̂A(x) does not exist on
the Hilbert space H. To see this, note the classical identity Aa(x)ṗa(0) =
(d/dt)t=0A(pt) where p : [0, 1] → σ; s �→ p(s) is a path, pt(s) = p(ts) for
t ∈ [0, 1], p(0) = x and A(pt) is the holonomy along pt. By varying the path
we can recover the connection from the holonomy. Hence we would like to
define the connection operator by this formula from the holonomy operator.
However, this does not work since the family of operators t �→ A(pt) is not
weakly continuous on H. Hence the derivative at t = 0 is ill-defined. It fol-
lows that the UV singularity structure of the Hamiltonian constraints is not
at all determined by the E dependence but rather by the A dependence. In
particular, the ambiguities discussed below coming from the loop attachment
purely stem from the A dependence.

It is at this point where we must regularise (29). We consider a triangula-
tion τ of σ by tetrahedra Δ. For each Δ, let us single out a corner p(Δ) and
denote the edges of Δ outgoing from p(Δ) by sI(Δ), I = 1, 2, 3. Likewise,
denote by sIJ(Δ) the edges of Δ connecting the end points of sI(Δ), sJ(Δ)
such that the loop βIJ(Δ) = sI(Δ)◦sIJ (Δ)sJ (Δ)−1 is the boundary of a face
of Δ. In particular sJI(Δ) = sIJ (Δ)−1. It is then not difficult to see that

Hτ (N) : (30)

=
1
κ

∑

Δ∈τ
N(pΔ)

∑

IJK

εIJK Tr(A(βIJ (Δ))A(sK (Δ)){A(sK(Δ))−1, V (Rp(Δ))})

is a Riemann sum approximation to (29), that is, it converges to (29) as we
refine the triangulation to the continuum. We will denote the refinement limit
by τ → σ.

Since (30) is now written in terms of quantities of which the quantisation
is known we immediately get a regularised Hamiltonian constraint operator
on H given by

̂H†
τ (N) : (31)

=
1

i�2P

∑

Δ∈τ
N(pΔ)

∑

IJK

εIJKTr(A(βIJ (Δ))A(sK (Δ))[A(sK(Δ))−1, ̂V (Rp(Δ))])

The reason for the adjoint operation in (31) is due to the definition of the
dual action in the footnote before (5) on elements in D∗ which in turn would
coincide with the action of ̂H(N) if elements of D∗ would be normalisable.
Notice that (30) is real valued so that classically Hτ (N) = Hτ (N) so we
may denote its operator equivalent with or without adjoint operation. It is
not difficult to see that in this ordering the operator is densely defined27

on D and closable (its adjoint is also densely defined on D). However, it is

27 This is basically due to the properties of the volume operator ̂V (R): If the graph
of a spin network state does not contain a vertex inside the region R then it is
annihilated.
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not even symmetric in this ordering. This may seem strange at first; how-
ever, it is not logically required because we are only interested in the zero
point of its spectrum. It is not even possible to have a symmetric order-
ing as pointed out in [81] where it is shown that for reasons of anomaly
freeness in constraint algebras with structure functions symmetric orderings
are ruled out.

What we are interested in is in which operator topology (if any) the limit
τ → σ exists. Since ̂Hτ (N) is not bounded, convergence in the uniform topol-
ogy is ruled out. For the same reason that connection operators are not de-
fined, convergence in the weak (and thus also strong) operator topology is
ruled out. Hence we are looking for a weaker topology. There is only one
natural candidate available: The weak∗ topology with respect to the algebraic
dual D∗ or a suitable subspace thereof. The only natural subspace is the space
of spatially diffeomorphism invariant distributions D∗

Diff (finite linear combi-
nations of the T[s] defined in Sect. 4.4).

Before we do this, we must tame the limit τ → σ somewhat: Notice that
classically limτ→σHτ (N) = H(N) no matter how we refine the triangulation.
This observation suggests the following strategy: Given a graph γ we consider
a family ε �→ τ εγ of triangulations adapted to γ where ε denotes the fineness
of the triangulation and ε→ 0 corresponds to τ → σ. This family is equipped
with the following properties: For each vertex v ∈ V (γ) and each triple of edges
e1, e2, e3 ∈ E(γ) incident at v consider a tetrahedron Δε

v(e1, e2, e3) such that
p(Δε

v(e1, e2, e3)) = v, such that sI(Δε
v(e1, e2, e3)) is a proper segment of eI ,

such that the sIJ(Δε
v(e1, e2, e3)) do not intersect γ except in their endpoints

and such that the Δε
v(e1, e2, e3) are diffeomorphic for different values of ε.

That such tetrahedra always exist is proved in [20].
Consider seven additional tetrahedra Δε

v,1(e1, e2, e3), .., Δε
v,7(e1, e2, e3) which

are obtained by analytically continuing28 the segments sI(Δε
v(e1, e2, e3))

through the vertex so that we obtain altogether eight tetrahedra of equal
coordinate volume which are like the eight octants of a Cartesian coordinate
system. Denote by W ε

v (e1, e2, e3) the neighbourhood of v they fill. Let W ε
v

be the region occupied by the union of the W ε
v (e1, e2, e3) as we vary the un-

ordered triples of edges incident at v. For sufficiently fine triangulation, the
W ε
v are mutually disjoint. Finally let W ε

γ be the union of the W ε
v . We have

the following identity for any classical integral
∫

σ

= [
∫

σ−Wε
γ

] +
∑

v∈V(γ)

1
(

nv

3

)

∑

e1∩e2∩e3=v

{[
∫

Wε
v−Wε

v(e1,e2,e3)

] +
∫

Wε
v(e1,e2,e3)

]}

(32)
where nv is the valence of v. We now triangulate the regions σ −W ε

γ , W ε
v −

W ε
v (e1, e2, e3) arbitrarily and use the classical approximation

∫

Wε
v(e1,e2,e3)

≈
8
∫

Δε
v(e1,e2,e3)

. Then, the tetrahedra within σ−W ε
γ , W ε

v−W ε
v (e1, e2, e3) can be

shown not to contribute to the action of the operator ̂Hτε
γ
(N) on any SNWF

28 For sufficiently fine triangulation the segments can be taken to be analytic.
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Ts over γ so that we obtain

̂H†
τε

γ
(N)Ts =

1
i�2P

∑

v∈V(γ)

N(v)
8

(

nv

3

)

∑

e1∩e2∩e3

∑

IJK

εIJK × (33)

×Tr(A(βIJ(Δε
v(e1, e2, e3)))

A(sK(Δε
v(e1, e2, e3)))[A(sK (Δε

v(e1, e2, e3)))−1, ̂V (Rp(Δ))]) Ts

For each γ choose29 some εγ once and for all such that τγ := τ
εγ
γ satisfies the

required properties and define ̂H†(N)Ts := ̂H†
τγ
Ts and ̂H†

ε (N)Ts := ̂H†
τε

γ
Ts

whenever s = (γ, j, I). Then, due to spatial diffeomorphism invariance we
have the following notion of convergence

lim
ε→0

|l( ̂H†(N)f)− l( ̂H†
ε (N)f)| = 0 (34)

for all l ∈ D∗
Diff and all f ∈ D. It is quite remarkable that precisely the space

of diffeomorphism invariant distribtions which is selected by one of the gauge
symmetries of the theory naturally allows us to define an appropriate operator
topology with respect to which it is possible to remove the regulator of the
Hamiltonian constraints. Notice that despite the fact that we have worked
with triangulations adapted to a graph, the operator is a linear operator on
H where it is, together with its adjoint, densely defined on D.

One of the most striking features is that the Hamiltonian constraint oper-
ators do not suffer from UV singularities as we anticipated in a background-
independent theory.

Several remarks are in order:

1. Quantum Spin Dynamics (QSD)
Intuitively, the action of the Hamiltonian constraint operator on spin
network functions over a graph γ is by creating the new edges
sIJ(Δ

εγ
v (e1, e2, e3)) coloured with the spin 1/2 representation and by

changing the spin on the segements sI(Δ
εγ
v (e1, e2, e3)) from j to j ± 1/2.

Hence in analogy to QCD one could LQG call QSD.
2. Locality

The action of the Hamiltonian constraint operator has been criticised to
be too local [82] in the following sense: The modifications that the Hamil-
tonian constraint operator performs at a given vertex do not propagate
over the whole graph but are confined to a neighbourhood of the vertex.
In fact, repeated action of the Hamiltonian generates more and more new
edges ever closer to the vertex never intersecting each other thus produc-
ing a fractal structure. In particular there is no action at the new vertices
created. This is not what happens in lattice gauge theory where no new
edges are created.

29 Use the axiom of choice for each diffeomorphism equivalence class of loop assign-
ments.
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Notice, however, that there is a large conceptual difference between
lattice gauge theory which is a background-dependent and regulator-
dependent (discretised) theory while LQG is a background-independent
and regulator-independent (continuum) theory. Even the role of the sin-
gle QCD Hamiltonian (generator of physical time evolution) and the in-
finite number of Hamiltonian constraints (generator of unphysical time
reparametrisations) is totally different. Hence there is no logical reason
why one should compare the lattice QCD Hamiltonian with the QSD
(or LQG) Hamiltonian constraints. In particular, by inspection the infi-
nite number of constraints H(x) = 0 have a more local structure than a
Hamiltonian H =

∫

σ d3xH(x).
Next, it is actually technically incorrect that the actions of the Hamil-

tonian constraints ̂Hv, ̂Hv′ at different vertices v, v′ do not influence each
other: In fact, these two operators do not commute, for instance if v, v′ are
next neighbour, because for any choice function γ �→ εγ what is required
is that the loop attachments at v, v′ do not intersect which requires that
the action at v′ after the action at v attaches the loop at v′ closer to v′

than it would before the action at v and vice versa.
Finally, the action of the Hamiltonian constraints on spin network

states did not fall from the sky but was derived from a proper regularisa-
tion. In particular it is not difficult to see that the operator would become
anomalous (see below) if it would act at the vertices that it creates. This
would indeed happen if one used the volume operator [78] rather than
[79]. Fortunately, the volume operator [78] was shown to be inconsistent
[80] for totally independent reasons.

In summary, there is no conclusive reason for why this locality property
of the constraints is a bad feature. In fact, in 3D [38] the solution space
of those constraints selects precisely the physical Hilbert space of [83].

3. Ambiguities
The final Hamiltonian constraint operators seem to be highly ambiguous.
There are several qualitatively different sources of ambiguities:
3a. Factor ordering ambiguities

We decided to order the E-dependent terms in (30) to the right of the
A-dependent terms. Could we have reversed the order? The answer
is negative [20]: Any other ordering results in an expression which is
no longer densely defined because the operator would map any spin
network state to a state which is a linear combination of SNWFs
whose underlying graphs are all tetrahedra of the triangulation. The
resulting “state” is not normalisable in the infinite refinement limit.
Thus the factor ordering chosen is in fact unique.

3b. Representation ambiguities
When replacing connections by holonomies we have used the holonomy
in the defining representation of SU(2). However, as pointed out in [84]
we could also work with higher spin representations without affecting
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the limit of the Riemann sum approximation. Recently it was shown
[85] that higher spin leads to spurious solutions to the Hamiltonian
constraints in 3D (where all solutions are known) and therefore very
likey also in 4D. Hence this representation ambiguity is very likely to
be absent.

Notice also that such kind of ambiguities are also present in ordi-
nary QFT: Consider a λφ4 QFT. Classically we could replace π(x)
by πf (x) := eiφ(f)π(x)e−iφ(f) in the Hamiltonian where φ(f) =
∫

R3 d3xf(x)φ(x) with some suitable test function f and φ, π are canon-
ically conjugate. One could even replace exp(iφ(f)) by some other
invertible functional F of φ and consider [FπF−1 + F̄−1πF̄ ]/2. In
quantum theory the Hamiltonian does change when performing this
substitution leading to a different spectrum. Of course, in QFT one
would never do that because this factor-ordering ambiguity generically
spoils polynomiality of the Hamiltonian, so one is guided by some sim-
plicity or naturalness principle. In general relativity the Hamiltonian
constraint is non-polynomial from the outset; however, still j = 1/2
is the simplest choice.

3c. Loop assignment ambiguities
The largest source of ambiguities is in the choice of the family of
triangulations ε �→ τ εγ adapted to a graph. In particular, while it
is natural to align the edges of the tetrahedra of the triangulations
with the beginning segments of the edges of the graph30 because
there are no other natural terahedra available in the problem, it is
not the only logically possible choice. For instance, one could slightly
detach the loops βIJ(Δε

v(e1, e2, e3)) from the beginning segments of
e1, e2, e3 as mentioned in the review by Ashtekar and Lewandowski
in [3] which found its way into [12]. Our statement here is as fol-
lows: First of all there is an additional, heuristic argument in favour
of the alignment. Secondly, even if one does not accept that argu-
ment, all of these uncountably infinite number of ambiguities at the
level of H are reduced to a countable number at the level of Hphys of
which all but a few are rather pathological in the sense that one could
also use them in lattice gauge theory but does not due to reasons of
naturalness.

Concerning the first claim, we want to point out that one of
the reasons for why we have decided to work with the expression
{Aja(x), V (Rx)} rather than (εabcE

b
kE

c
l εjkl/

√| det(E)|)(x) is that di-
rect quantisation of the latter would formally result on a spin network
state over a graph γ in an expression of the form (before introducing
the point splitting regulator)

30 There is no ambiguity in the fact that the only contributions of the operator result
from the vertices of the graph. This is a direct consequence of the properties of
the volume operator [79] and the unique factor ordering mentioned above.
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∫

σ

d3x
1

∑

v′∈V(γ) δ(x, v′)̂Vv

∑

v∈V(γ)

∑

e1∩e2=v

∫ 1

0

dt ėa1(t)

δ(x, e1(t))
∫ 1

0

ds ėb2(s) δ(x, e2(s)) ×

×F j
ab(

e1(t) + e2(s)
2

)εjklX
k
e1X

l
e2 (35)

where Xj
e is a right invariant vector field on the copy of SU(2) cor-

responding to A(e). Likewise ̂Vv is a well-defined operator (not an
operator-valued distribution) built from those vector fields. Clearly
(35) involves the holonomy of an infinitesimal loop whose tangents at
the v are pairs of edges incident at v. This motivates the alignment
mentioned above.31 The only reason why (35) is not used in place of
(30) is that the the operator ̂Vv has zero modes so that its inverse is
not even densely defined.

Concerning the second claim we notice that solutions to all con-
straints will be elements l of D∗

Diff which satisfy l( ̂H(N)†f) = 0 for
all N and all f ∈ D. Now since l is spatially diffeomorphism in-
variant, the space of solutions to all constraints only depends on the
spatially, piecewise analytic diffeomorphism invariant characteristics
of the loops βIJ(Δ

εγ
v (e1, e2, e3)). Hence it matters whether or not the

tetrahedra Δ are just continuous at their corners or of higher dif-
ferentiability class, how the additional edges are routed or braided
through the edges of the graph and whether they are aligned or not.
Concerning the braiding, a natural choice is the one displayed in [20]
which makes use of Puisseaux’ theorem.32 It follows that the seem-
ingly uncountably infinite set of possible loop assignments is reduced

31 A careful. point splitting regularsation removes the δ-distribution in both nu-
merator and the denominator as well as the the integral over σ leaving only an
integral over s, t with support in infinitesimal neighbourhoods of the vertices of
the graph in question.

32 Basically one wants that the arcs intersect the graph only in their end points
which for sufficiently fine triangulations can only happen for edges e incident at
the vertex in question. One first shows that there always exists an adapted frame,
that is, a frame such that sI , sJ lie in the x, y plane for sufficiently short sI , sJ .
Now one shows that for any other edge e of the graph whose beginning segment
is not aligned with either sI or sJ there are only two possibilities: A. Either for
all adapted frames the beginning segment of e lies above or below the x, y plane
and whether it is above or below is independent of the adapted frame. B. Or
there exists an adapted frame such that e lies above the x, y plane. This can
be achieved simultaneously for all edges incident at the vertex in question. The
natural prescription is then to let the edge sIJ be the straight line in the selected
frame connecting the end points of sI , sJ at which it intersects transversally.
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to a discrete number of choices, of which all but a finite number is
unnatural,33 once we construct solutions of all constraints.

In summary, the most natural proposal is such that the edges
sIJ(Δ

εγ
v (e1, e2, e3)) intersect the graph γ transversally with the braid-

ing described in [20]. This defines a concrete and non-ambiguous op-
erator in the sense that it uniquely selects a subspace of D∗

Diff as the
space of solutions to all constraints.

3d. Habitat ambiguities
In [12] we find an extensive discussion about “habitats” D∗

�. A habitat
is a subspace of D∗ containing D∗

Diff with the minimal requirement
that it is preserved by the dual action of the Hamiltonian constraints.
Habitats were introduced in [72, 73]. The idea was to take the limit
ε → 0 for the duals of the Hamiltonian constraints on such a habitat
in the sense of pointwise convergence. The habitat ambiguity is that
there maybe zillions of habitats on which a limit of this kind can be
performed. As was shown in those papers, there exists at least one
such habitat and it has the property that the limit dual operators are
Abelian.

We now show that this habitat ambiguity is actually absent:
Namely, the habitat spaces must be genuine extensions of D∗

Diff . Hence
these spaces are not in the kernel of the spatial diffeomorphism con-
straint and are therefore unphysical. Hence the only domain where
to define the Hamiltonian constraints (rather than their duals) is on
D, that is, on a dense subspace of the kinematical Hilbert space H.
This is the same domain as for the spatial diffeomorphism constraints
which thus treats both types of constraints democratically. This fact
is widely appreciated in the LQG community and not a matter of de-
bate; the habitat construction presented in [12] is outdated. Habitats
are unphysical and completely irrelevant in LQG.

On the kinematical Hilbert space the Hamiltonian constraints are
non-commuting, see below. The apparent contradiction with the Abe-
lean nature of the limits of the duals on the aforementioned habitat
is resolved by the fact that effectively the commutator of the limit-
ing duals on the habitat is the dual of the commutator on D. While
the commutator on D is non-vanishing, its dual annihilates D∗

Diff and
also the habitat D∗

� chosen which is a sufficiently small extension
of D∗

Diff .
Hence we see that the amount of ambiguity is far less severe than [12]
perhaps make it sound once we pass to Hphys. In fact, there are only a
handful of natural proposals available.

33 Like winding the segments sI of the tetrahedra of the triangulation an arbitrary
number of times around the edges eI of the graph. Such a ridiculous choice could
also be made in lattice gauge theory but is not considerded there due to reasons
of naturalness.
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4. Anomalies
As already mentioned, the constraint algebra can only be checked in the
form that only involves finite diffeomorphisms. Indeed it is not difficult
to see that the first two relations of the Dirac algebra (2) really hold in
the form (24) on H up to a spatial diffeomorphism [2]. Likewise one can
check that

l([ ̂H†(N), ̂H†(N ′)]f) = 0 (36)

for all test functions N,N ′, all f ∈ D and all l ∈ D∗
Diff . This can be read

as an implementation of the third relation in (2) because that relation
involves an infinitesimal spatial diffeomorphism constraint whose dual ac-
tion should annihilate D∗

Diff . Of course, the commutator does not involve
an infinitesimal diffeomorphism which does not exist in our theory. Rather
what happens is the following: The commutator [ ̂H†(N), ̂H†(N ′)] is non-
vanishing on H. However, it can be shown that on SNWFs it is a finite
linear combination of terms of the form [U(ϕ)−U(ϕ′)] ̂O where ̂O is some
operator on H.

5. On shell closure versus off shell closure
As we just just saw, the quantum constraint algebra is consistent, that
is, non-anomalous. More precisely, the first relation in (2) holds, in ex-
ponentiated form, on H exactly, it is non-anomalous in every sense. The
second relation in (2) also holds in exponentiated form on H but only
modulo a spatial diffeomorphism. How about the third relation in (2)? In
[38] it is shown that an independent quantisation of the classical function
D(q−1(N ′dN − NdN ′)) appearing on the right-hand side of (2) can be
given. There is no contradiction to the non-existence of the operator cor-
responding to D(N ) because D(q−1(N ′dN − NdN ′)) is not of the form
D(N ) due to the structure function q−1 which is responsible for the exis-
tence of the composite operator corresponding to D(q−1(N ′dN−NdN ′)).
That operator is constructed in a way analogous to the Hamiltonian con-
straint operator and is formulated in terms of the operators U(ϕ). The
duals of both operators [ ̂H†(N), ̂H†(N ′)] and ̂D(q−1(N ′dN −NdN ′)) an-
nihilate D∗

Diff .
Hence what one can say is the following: We define two operators on H

as equivalent ̂O1 ∼ ̂O2 provided that the dual of ̂O1− ̂O2 annihilates D∗
Diff .

Then the classical identities (2) holds on H in the sense of equivalence
classes (the first relation even identically).

One could call this partly on-shell closure (partly because we did not
use the full Hphys but only HDiff in the equivalence relation). While it
would be more satisfactory to have full off-shell closure, it is not logically
required: At the end we are only interested in physical states and these
are in particular spatially diffeomorphism invariant. Those states cannot
distinguish between different representatives of the equivalence classes.

6. Semiclassical limit
The problem with demonstrating off-shell closure is that, in contrast to
the first two, the third relation in (2) does not hold by inspection, not even
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modulo a diffeomorphism. This is not surprising because even classically
one needs a full page of calculation in order to bring the Poisson bracket
between two Hamiltonian constraints into the form of the right-hand side
of the third relation in (2). This calculation involves reordering of terms,
differential geometric identities and integrations by parts etc. which are
difficult to perform at the operator level. In order to make progress on this
issue one would therefore like to probe the Dirac algebra with semiclassical
states, the idea being that in expectation values with respect to semiclas-
sical states the operators can be replaced by their corresponding classical
functions and commutators by Poisson brackets, up to � corrections.
There are two immediate obstacles with this idea:

The first is that the volume operator involved is not analytically di-
agonisable. Recently, however, it was shown that analytical calculations
involving the volume operator can be performed precisely using coherent
states on H [77, 86], so this problem has been removed.34 The second is
that the existing semiclassical tools are only appropriate for graph non-
changing operators such as the volume operator. Namely, as we will see,
in order to be normalisable, coherent states are (superpositions of) states
defined on specific graphs. The Hamiltonian constraint operator, however,
is graph changing. This means that it creates new modes on which the
coherent state does not depend and whose fluctuations are therefore not
suppressed. Therefore the existing semiclassical tools are insufficient for
graph-changing operators such as the Hamiltonian constraint. The devel-
opment of improved tools is extremely difficult and currently out of reach.

7. Solutions and physical inner product
Solutions to all constraints can be constructed algorithmically [38]. These
are the full LQG analogues of the LQC solutions of the difference equa-
tion that results from the single Hamiltonian constraint of LQC. They are
the first rigorous solutions ever constructed in canonical quantum gravity,
have non-zero volume and are labelled by fractal knot classes because the
iterated action of the Hamiltonian constraint creates a self-similar struc-
ture (spiderweb) around each vertex. However, as in LQC these solutions
are not systematically derived from a rigging map which is why a physical
inner product is currently missing for those solutions.

This finishes the discussion of the properties of the Hamiltonian constraint
operators. We want to stress that while evidently several issues need to be
resolved, this is the first time in history that canonical quantum gravity was
brought to a level such that
1. these and related questions could meaningfully be asked and analysed with
mathematical precision;
2. a concrete, natural proposal for the Hamiltonian constraint operators can be
derived which is consistent (anomaly free), namely the one where the segments

34 Notice that it is not possible to probe D with semiclassical spatially diffeomor-
phism invariant states because none of the operators involved preserves HDiff .
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sI and sIJ respectively are aligned and transversal to the graph respectively
and where the resulting loops βIJ are in the j = 1/2 representation.

Nobody in the LQG community believes that this concrete model is the
“right” or “final” one, but it provides a concrete proposal which can be studied
and further improved.

As discussed, the most important open issues are the semiclassical limit
and the physical inner product. These issues are overcome to a large extent
by the master constraint programme.

Master Constraint Programme

The idea of the master constraint is to sidestep the complications of the Hamil-
tonian constraints that have their origin in the non-Lie algebra structure of
the Dirac algebra D. Consider the master constraint

M :=
∫

σ

d3x
H(x)2

√

det(q)(x)
(37)

It is not difficult to see that (37) has the following properties:
1. M = 0 is equivalent with H(N) = 0 for all test functions N .
2. {F, {F,M}}M=0 = 0 is equivalent with {F,H(N)} = 0 when H(N ′) = 0
for all test functions N, N ′.
3. M is spatially diffeomorphism invariant.
The first property says that the single constraint M = 0 encodes the same
constraint surface as the infinite number of Hamiltonian constraints while the
second property says that the single double Poisson bracket with M selects
the same weak Dirac observables as the infinite number of single Poisson
brackets with Hamiltonian constraints. In other words the master constraints
defines the same reduced phase space as the infinite number of Hamiltonian
constraints.

The third property means that the complicated Dirac algebra D can be
replaced by the comparatively trivial Master Algebra M

{D(N), D(N ′)} = κD(LNN ′)
{D(N),M} = 0

{M,M} = 0 (38)

which now is a true Lie algebra. This removes almost all obstacles that we
encountered with the Hamiltonian constraints:

1. Role of HDiff

Since M is spatially diffeomorphism invariant, its operator version ̂M
can be defined directly on the spatially diffeomorphism invariant Hilbert
space HDiff . In fact, if ̂M is a knot class changing spatially diffeomorphism
invariant operator, then it must be defined on HDiff , it cannot be defined
on H [43]. In retrospect, this justifies the construction of HDiff because
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for the solution of the Hamiltonian constraints the Hilbert space HDiff is
unsuitable as an intermediate step towards the physical Hilbert space as
it is not left invariant by the Hamiltonian constraints.

2. Regulator removal
Remember the awkward role of spatially diffeomorphism invariant states
in the removal of the regulator of the Hamiltonian constraint operators us-
ing a special type of weak∗ operator topology. It turns out [74] that a knot
class changing operator can indeed be constructed onHDiff by directly im-
plementing the techniques of [20] sketched above. In the construction of
this operator, the removal of the regulator is now in the standard weak
operator topology of HDiff .

3. Physical Hilbert space
Since the infinite number of Hamiltonian constraints was replaced by a
single constraint, provided ̂M can be defined as a positive self-adjoint
operator on HDiff and provided that HDiff decomposes into a direct sum
of ̂M -invariant, separable Hilbert spaces, we know that direct integral
decomposition guarantees the existence of a physical Hilbert space with a
positive definite inner product induced from HDiff . In order to construct
it explicitly one needs to know the projection valued measure associated
with ̂M , that is, only standard spectral theory is required. While this is a
difficult task to carry out explicitly due to the complexity of the operator
̂M , we therefore have an existence proof for Hphys.

4. Anomalies: Ambiguities, locality and the semiclassical limit
Since there is only one master constraint operator, it is trivially anomaly
free. This enables one to consider a wider class of loop attachments, in par-
ticular those that would lead to an anomaly in the algebra of the Hamilto-
nian constraints. As examples show [35], such quantisations of the master
constraint based on anomalous individual constraints lead to spectrum
which does not include zero. However, the prescription to subtract the
spectrum gap from the master constraint as mentioned in Sect. 3 works
in all examples studied. One might worry that this spectrum gap, which
in free field theories is related to a normal ordering constant, is infinite.
However, this is not the case: The master constraint is not just a plain
sum of squares of the individual constraints, it is a weighted sum. The
weight in the case of gravity is the factor 1/

√

det(q) in (37) which is the
natural object to consider in order to make (37) spatially diffeomorphism
invariant. For the case of the Maxwell field Gauss constraint studied in [35]
the associated weight had to be a certain trace class operator on the one
particle subspace of the Fock space. The weight function (operator) thus
makes the normal ordering constant finite. Hence the master constraint
programme can handle anomalous constraints.
For gravity of particular interest are constraints which are not graph
changing, although the corresponding Hamiltonian constraints would be
anomalous, for three reasons:
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4a. Ambiguities
Since the loop to be attached is already part of the graph, the sit-
uation becomes closer to the situation in lattice gauge theory. This
tremendously reduces the number of choices for the loop attachment
and makes it no worse than the choice of a fundamental Hamiltonian
in Wilson’s approach to the renormalisation group.

4b. Locality
With this option we are free to consider for instance “next neighbour”
loop attachments. This leads to a spreading of the influence of the
action of the Hamiltonian constraint from one vertex to all others
thus removing the criticism of [82].

4c. Semiclassical limit
A non-graph-changing master constraint can be defined on the kine-
matical Hilbert space. This has the advantage that the semiclassical
states which so far in LQG are elements of H can be directly used
to analyse the semiclassical properties of ̂M . This has been done re-
cently in [77] with the expected result that the infinitesimal generators
(the Hamiltonian constraints) do have the correct semiclassical limit.
Since these constraints determine the physical Hilbert space, this is
an important step towards showing that gauge invariant operators
commuting with ̂M have the correct semiclassical limit on the physi-
cal Hilbert space. The semiclassical limit is of course only reached on
graphs which are sufficiently fine. Graphs with huge holes would cor-
respond to spacetimes with degenerate metrics in macroscopic regions
which is not allowed in classical general relativity.

Notice that semiclassical states have so far not been constructed on
HDiff . This means that the semiclassical limit of the graph-changing
master constraint is currently out of reach, thus favouring the graph
non-changing version.

In what follows we will sketch both the graph-changing master constraint op-
erator on HDiff and the graph non-changing operator on H.

Graph-Changing Master Constraint. We follow closely [74]. We notice that
classically (τ is again a triangulation)

M = lim
τ→σ

∑

Δ∈τ
[C̃(Δ)]2 (39)

where C̃(Δ) coincides with (30) for the smearing function N = χΔ (the char-
acteristic function for a tetrahedron) and with V (Δ) replaced by

√

V (Δ).
Thus, the heuristic idea is to define the quadratic form on D∗

Diff by

QM (l, l′) := lim
τ→σ

∑

Δ∈τ
< l, [̂C̃

′
(Δ)]∗[̂C̃

′
(Δ)]l′ >Diff (40)
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where the prime denotes the operator dual as usual and ∗ denotes the adjoint
on HDiff . Unfortunately (40) is ill-defined as it stands because the operators
̂C̃
′
(Δ) do not preserve D∗

Diff . The cure is to extend < ., . >Diff to an inner
product < ., . >∗ on all of D∗. The final result turns out to be insensitive
to the details of the extension because in the limit τ → σ the Riemann sum
becomes well defined on D∗

Diff .
Rather than going through the rigorous argument which can be found in

[74] we will present here the shortcut already sketched in [19]: Pretending that
(40) is well defined we can insert a resolution of unity (we assume that the
normalisation constants k[s] have been absorbed into the T[s] so that the T[s]

form an orthonormal basis)

QM (T[s1], T[s2]) := lim
τ→σ

∑

Δ∈τ

∑

[s]

< T[s1], [
̂C̃
′
(Δ)]∗T[s] >Diff< T[s], [

̂C̃
′
(Δ)]l′ >Diff

(41)
Using the definition of the rigging map η(Ts) = T[s], the definition of the
scalar product < η(Ts), η(T ′

s) >Diff= η(Ts′)[Ts] and the definition of the dual
operator [O′l](f) = l(O†f) we obtain the now well-defined equation

QM (T[s1], T[s2]) = lim
τ→σ

∑

Δ∈τ

∑

[s]

T[s1](
̂C̃
†
(Δ)Ts0([s])) T[s2](

̂C̃
†
(Δ)Ts0([s])) (42)

where s0([s]) is some representative of [s]. Now for fixed [s1], [s2] the number of
[s] contributing to (41) is easily seen to be finite. Hence we can interchange the
two sums in (41). Furthermore, for sufficiently fine τ we just need to consider
those terahedra Δv containing a vertx of the graph underlying s0([s]). One
can then show that the limit τ → σ becomes trivial due to the diffeomorphism

invariance of T[s1], T[s2]. Denoting ̂C̃
†
(Δ) for v ∈ Δ by ̂C̃

†
v, which is the same

as the coefficient of N(v) in (33) just that ̂Vv := V (Rv) is replaced by
√

̂Vv,
we therefore obtain the final formula

QM (T[s1], T[s2]) =
∑

[s]

∑

v∈V(γ(s0([s]))

T[s1](
̂C̃
†
vTs0([s])) T[s2](

̂C̃
†
vTs0([s])) (43)

It is easy to show that (43) is independent of the representative s0([s]) again
due to spatial diffeomorphism invariance.

Expression (43) defines a positive quadratic form. However, it is not ob-
vious that it presents the matrix elements of a positive operator. In [74] it is
shown that (43) is closable thus presenting the matrix elements of a positive,
self-adjoint operator ̂M on HDiff . Moreover, the non-separable Hilbert space
HDiff decomposes into an uncountable direct35 sumHDiff = ⊕θHθ

Diff . Here the

35 Modulo some subtleties which can be found in [74] and that can be dealt with.
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sectors Hθ
Diff are separable and are labelled by the angle moduli mentioned

earlier. They are left invariant by ̂M basically because it only creates three
valent vertices which do not have moduli. It follows that the direct integral
method is applicable to ̂M thus resulting in the physical Hilbert space Hphys

induced from HDiff .
It is easy to show that ̂M allows for an infinite number of zero eigen-

vectors (elements of HDiff). This follows immediately from the properties of
the Hamiltonian constraints. One just has to choose γ(s) to be out of the
range of the graphs underlying the SNWs generated by the Hmiltonian con-
straints. Hence zero is contained in the point spectrum of this operator which
constructed using non-anomalous constraints. However, due to the present
lack of graph-changing and even spatially diffeomorphism-invariant coherent
states, a verification of the correct semiclassical limit of the graph-changing
̂M is currently out of reach.

Non-Graph-Changing (Extended) Master Constraint. In order to have control
on the semiclassical limit one must currently use a non-graph-changing opera-
tor and an operator which can be defined onH. This can only be done by using
underlying Hamiltonian constraints which are anomalous in the naive dis-
cretisation displayed below. However, there are techniques known from lattice
gauge theory [87] which make use of the renormalisation group flow and which
might enable one to work with non-anomalous constraints. This amounts to
considering more sophisticated discretisations. We see here that the issues of
the semiclassical limit and the anomaly freeness are interlinked in a compli-
cated way. Fortunately, anomalies do not pose any obstacles to the master
constraint programme.

In order to define such an operator we need the notion of a minimal loop:
Given a vertex v of a graph γ and two edges e, e′ outgoing from v, a loop
β(γ, v, e, e′) within γ based at v, outgoing along e and incoming along e′ is
said to be minimal if there is no other loop within γ with the same properties
and fewer edges traversed. Let L(γ, v, e, e′) be the set of minimal loops with
the data indicated. Notice that this set is always non-empty but may consist
of more than one element. We now define ̂MTs := ̂MγTs on spin network
states Ts over γ where

̂Mγ :=
∑

v∈V(γ)

̂C̃
†
v
̂C̃v (44)

̂C̃v :=
1

|T (γ, v)|
∑

e1,e2,e3∈T(γ,v)

εv(e1, e2, e3)
|L(γ, v, e1, e2)|

∑

β∈L(γ,v,e1,e2)

Tr([A(β) −A(β)−1]A(e3)[A(e3)−1,

√

̂Vv])

Here T (γ, v) is the number of ordered triples of edges incident at v (taken
with outgoing orientation) whose tangents are linearly independent36 and

36 We set ̂C̃v = 0 if T (γ, v) = ∅.
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εv(e1, e2, e3) = sgn(det(ė1(0), ė2(0), ė3(0)). The volume operator is given ex-
plicitly by

̂Vv =

√

√

√

√| i
48

∑

e1,e2,e3∈T(γ,v)

εv(e1, e2, e3)εjklX
j
e1Xk

e2X
l
e3| (45)

where Xj
eTs = Tr([τjA(e)]T ∂/∂A(e)) is the right invariant vector field on the

copy of SU(2) determined by the holonomy A(e) as introduced earlier.
It is easy to see that the definition (44) is spatially diffeomorphism invari-

ant. Moreover, the results of [77] imply that expectation values with respect
to the coherent states constructed in [86] which were barely mentioned in
[12], defined on graphs which are sufficiently fine, the zeroth order in � of
̂Mγ coincides with the classical expression. In other words, the correctness of
the classical limit of ̂M has been established recently. The results of [77] also
imply that the commutator between the

∑

vNv
̂Cv reproduces the third rela-

tion in (2) in the sense of expectation values with respect to coherent states

where ̂Cv is the same as ̂C̃v in (44) just that
√

V̂v is replaced by V̂v. This
removes a further criticism spelled out in [12], namely we have off-shell clo-
sure of the Hamiltonian constraints to zeroth order in �. Possible higher-order
corrections (anomalies) are no obstacle for the master constraint programme
as already said.

Brief Note on the Volume Operator

In order to show this, one has to calculate the matrix elements of (45) which is
non-trivial because the spectrum of that operator is not accessible exactly.37

However, one can perform an error-controlled � expansion within coherent
state matrix elements and compute the matrix elements of every term in that
expansion analytically [77]. The idea is extremely simple and it will surprise
nobody that this works: In applications we are interested in expressions of the
form Qr where Q is a positive operator, 0 < r ≤ 1/4 is a rational number
and its relation to the volume operator is V = 4

√
Q. The matrix elements of

Q in coherent states can be computed in closed form. Now use the Taylor
expansion of the function f(x) = (1 + x)r up to some order N including the
remainder with x = Q/ < Q > −1 where < Q > is the expectation value
of Q with respect to the coherent state of interest. The operators xn in that
expansion can be explicitly evaluated in the coherent state basis while the
remainder can be estimated from above and provides a higher � correction
than any of the xn, 0 ≤ n ≤ N . This completely removes the criticism of [12]
that “nothing can be computed”.

In [12] we also find a lengthy discussion about the regularisation of the
volume operator in terms of flux operators. Actually the discussion in [12]
37 The matrix elements of the argument of the square root are known in closed

form [88].



232 T. Thiemann

follows closely [79]; however, the additional avaraging step performed in [79] is
left out in [12] for reasons unclear to the present author. However, even if one
considers that averaging procedure unconvincing or unmotivated, there are
completely independent abstract reasons for why (45) is the only possibility
to define the volume operator which were spelled out in [79]: Namley, the
argument of the volume operator, which classically is given as the integral
of

√| det(E)| must be a completely skew expression in the right invariant
vector fields because the only way to regularise it is in terms of flux operators.
Now the relative coefficients between the terms for each triple are fixed, up
to an overall constant, by spatial diffeomorphism covariance and cylindrical
consistency.38 The task to do was to show that a regularisation indeed exists
which produces (45) which was done in [79] and to fix the constant which was
done in [80]. In addition, there is an alternative point splitting regularisation
[89] which does not use the averaging which also results in [79]. Hence there
can be absolutely no debate [12] about the correctness of (45) in particular
that now we know from [77] that its classical limit is correct.

Finally, [12] stresses that the final operator that one gets should be in-
dependent of the regularisation scheme and it is criticised that the regulari-
sation scheme that one uses for the volume operator seems to depend on ad
hoc choices so that different choices could give a different operator. Again
we state that [79, 80] fix the volume operator uniquely. Apart from that we
would like to stress that in ordinary QFT there are only a handful of regulari-
sation schemes that one tests: Pauli–Villars, minimal subtraction, dimensional
regularisation, point splitting. Here two different schemes were used [79, 89]
which resulted in the same operator and thus the test is of the same order of
“generality”.

Algebraic Quantum Gravity (AQG)

Notice that the framework of algebraic quantum gravity (AQG) proposed in
[77] in many ways supersedes LQG: In contrast to LQG, AQG is a purely com-
binatorial theory, that is, topology and differential structure of σ are semiclas-
sical notions and not elements of the combinatorial formulation. Next, there
are not an uncountably infinite number of finite, embedded graphs, there is
only one countably infinite algebraic (or abstract) graph [90]. In particular,
the theory loses its graph dependence; only in the semiclassical sectors (cor-
responding to different σ) do embedded graphs play a role. Hence AQG can
possibly deal with topology change.

The Hilbert space of AQG is still not separable, but for an entirely different
reason than in LQG: Since the graph is infinite we have to deal with an infinite
tensor product of Hilbert spaces [86]. However, as von Neumann showed, these
Hilbert spaces naturally decompose into separable Hilbert spaces which in
our case turn out to be invariant under the algebraic version of ̂M so that on
38 That is, the expression (45) for a given graph reduces to the one on any smaller

graph when applied to spin network functions over the smaller graphs.
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each sector the physical inner product exists by direct integral decomposition.
Hence, non-separability poses absolutely no obstacle. Some of these sectors
can presumably be identified as approximations to quantum field theories
on curved backgrounds (namely when the geometry fluctuations around that
background are small). In some sense, all QFTs on curved spacetimes are
included which must be the case in order to have a background-independent
theory. The Hilbert space therefore has to be non-separable for we do not
expect QFTs on different backgrounds to be unitarily equivalent and there
are certainly uncountably many non-diffeomorphic backgrounds.

Finally, since the natural representation U(ϕ) of Diff(σ) is not available
in the combinatorial theory (there is no σ), spatial diffeomorphism invariance
has to be dealt with in an algebraic way. This is possible by using the extended
master constraint whose classical expression for given σ is given by

ME = M +
∫

σ

d3x
qabDaDb
√

det(q)
(46)

It turns out that the additional piece in (46) just like M itself can be lifted to
the algebraic level thus abstracting from the given σ. Actually, the additional
piece could also be defined in LQG39 and the results of [77] also imply that ME

has the correct classical limit in both LQG and AQG. However, within LQG
ME is somewhat unmotivated because one already has the representation
U(ϕ) of spatial diffeomorphisms. In AQG, on the other hand, there is no choice
and the advantage of ME is that it treats the Hamiltonian constraint and the
spatial diffeomorphism constraint on equal footing (rather than defining the
infinitesimal generator for the Hamiltonian constraints but only exponentiated
diffeomorphisms).

We refrain from displaying more details about AQG here as this is a rather
recent proposal and because this is a review about LQG. The interested reader
is referred to [77].

Dirac Observables and Physical Hamiltonian

As mentioned in Sect. 2, general relativity is an already parametrised system
and in order to extract gauge invariant information and a notion of physical
time evolution among observables one must deparamterise it, e.g. using the
relational framework sketched in Sect. 2. There are many ways to do this
but a minimal requirement is that the physical Hamiltonian is close to the
Hamiltonian of the standard model at least when spacetime is close to being
flat. In [33] a particularly simple way of deparametrisation which fulfils this
requirement has been recently proposed using scalar phantom matter. In fact
one can write the Hamiltonian constraints in the equivalent form H(x) =
π(x) +C(x) where π is the momentum conjugate to the phantom field φ and
39 Despite the fact that Da does not exist as an operator-valued distribution in

LQG. The too singular Da are tamed by the additional operator qab/
√

det(q).
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C is a positive function on phase space which depends on all remaining matter
and geometry only. Let now for any real number τ

hτ :=
∫

σ

d3x (τ − φ)(x) C(x), h :=
∫

σ

d3x C(x) (47)

Given a spatially diffeomorphism invariant function F we set

F (τ) :=
∞
∑

n=0

1
n!
{hτ , F}(n) (48)

Then F (τ) is a one parameter family of Dirac observables and dF (τ)/dτ =
{h, F (τ)}. In particular, h is itself a Dirac observable, namely the physical
Hamiltonian that drives the physical time evolution of the Dirac observables.

This holds for the classical theory. In quantum theory (48) should be re-
placed by

̂F (τ) := exp(ĥτ/(i�)) ̂F exp(−ĥτ/(i�)) (49)

provided we can make sense out of ĥτ as a self-adjoint operator. This is work
in progress.

Brief Note on Spin Foam Models

Spin foam models [91] are an attempt at a path integral definition of LQG.
They were heuristically defined in the seminal work [92] which attempted at
the construction of the physical inner product via the formal exponentiation of
the Hamiltonian constraints of [20]. The reason that this approach was formal
is that the Hamiltonian constraints do not form a Lie algebra and they are
not even self-adjoint. Thus, there are mathematical (exponentiation of non-
normal operators) and physical (non-Lie group structure of the constraints)
prohibiting the possibility that functional integration over N of exp(i ̂H(N))
leads to a (generalised) projector) issues with this proposal.

This is why spin foam models nowadays take a different starting point.
Namely, one starts from the Palatini action and writes it as a topological BF
theory SBF =

∫

M Tr(B∧F ) together with additional simplicity constraint ac-
tion S(Λ,B) =

∫

M
Tr(Λ⊗B∧B) where Λ is a Lagrange multiplier tensor field

with certain symmetry properties. Extremisation with respect to Λ imposes
the condition that the B field two form comes from the wedge product of two
tetrads. The advantage of this formulation is that a lot is known about the
topological BF theory and one can regard the additional simplicity constraint
as a kind of “interaction” term in addition to the “free” BF term. In order to
define the spin foam model one has to regularise it as in the canonical theory
by introducing a finite 4D trinagulation τ and a corresponding discretisation
of the action like Wilson’s action for Yang–Mills theory. The connection A
underlying the curvature F is located as a holonomy on the edges of the dual
triangulation τ∗ while the B field is located on the faces of τ . One integrates
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exp(iSBF + iS(Λ,B)) over A with respect to the Haar measure and over B
and the Lagrange multiplier Λ with respect to Lebesgue measure. The inte-
gral over Λ results in a δ-distribution in B. This can be heuristically replaced
by a δ distribution in the right invariant vector fields corresponding to the
holonomies of the connection. One can then perform the B integral resulting
in an additional δ distribution in the holonomies which then are written as a
sum over representations using the Peter&Weyl theorem. The simplicity con-
straints in terms of the right invariant vectoir fields then impose restrictions
on the occurring representations on the edges and intertwiners at the vertices.

These steps are simplest illustrated by modelling the situation by a one-
dimensional system SBF = BF, S(Λ,B) = ΛB2. Then formally

∫

dF

∫

dB

∫

dΛ exp(i[BF + ΛB2]) =
∫

dF

∫

dB

∫

δ(B2) exp(iBF )

=
∫

dF

∫

dB

∫

δ(−(d/dF )2) exp(iBF ) =
∫

dF

∫

δ(−(d/dF )2)δ(F ) (50)

This brief paragraph does not reflect at all the huge body of research per-
formed on spin foam models; we have barely touched only those aspects
directly connected with the canonical formulation. Please refer to [91] and
references therein for a more complete picture describing the beautiful con-
nection with state sum models, TQFTs, categorification, 4D manifold invari-
ants (Donaldson theory), non-commutative geometry, emergence of Feynman
graph language and renormalisation groups etc.

From the canonical perspective, spin foam models are very important as
they provide a manifestly spacetime diffeomorphism covariant formulation of
LQG. In order to reach this goal, the following issues have to be overcome:

1. The relation with the canonical formulation is somehow lost. In fact, it is
well known how to obtain a path integral formulation of a given canonical
constrained theory [26]. The integration measure cannot be the naive one
as used above if there are second-class constraints. That this is indeed the
case has been shown in the important work [93] which is, in the mind of
the author, not sufficiently appreciated.

2. While the simplicity constraints expressed in terms of B are mutually com-
muting as operators, their replacement in terms of right invariant vector
fields do not and in fact they do not form a closed algebra. Hence, consid-
ered as quantum constraints they are anomalous and it is remarkable that
there exists a unique non-trivial solution to the simplicity constraints [94]
at all. For the corresponding model one can show that the path integral
is dominated by degenerate metrics [95], hence it seems not to have the
correct semiclassical behaviour which is then maybe not too surprising.
There should be a way to implement the simplicity constraints in their
non-anomalous form.

3. In contrast to pure BF theory these constrained BF theories are no longer
topological and thus not independent of the triangulation. Thus, in order
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to get rid of the triangulation dependence one could sum over triangula-
tions, and the weights with which this should be done are motivated by
group field theory [96]. The result is supposed to give a formula defining a
rigging map. While there are attractive features such as an emergent Feyn-
man graph language, it is presently unclear whether the sum converges
(as it should in a fundamental theory) or whether it is maybe not more
appropriate to perform a refinement limit as in the theory of dynamical
triangulations [97].

5 Physical Applications

We have so far mostly reported about the status of the quantisation pro-
gramme. Since LQG is a non-perturbative approach, preferrably one would
complete the quantisation programme before one studies physical applications.
Since the programme reached its current degree of maturity only relatively re-
cently, physical applications could so far not attract much attention. Certainly
what is needed in the future is an approximation scheme with respect to which
physical states, the physical inner product, Dirac observables, and the physical
Hamiltonian can be computed with sufficient detail. The semiclassical states
[86] provide a possible avenue especially with respect to applications for which
the quantum geometry can be regarded as almost classical. Namely we can
consider kinematical semiclassical states which are peaked on the constraint
surface and on the gauge cut defined by the clock variables. These states are
then approximately annihilated by the master constraint and the power series
defining the Dirac Observables can be terminated after a few terms just like
in perturbation theory. This procedure could be called quantum gauge fixing
because we do not fix a gauge classically but rather suppress the fluctuations
off the constraint surface and off the gauge cut.

Despite the fact that such an approximation scheme has so far not been
worked out in sufficient detail40 there are already some physical applica-
tions of LQG which are insensitive to the details of such an approximation
scheme. These are (1) matter coupling, (2) kinematical geometrical operators,
(3) Quantum black hole physics, (4) semiclassical states, (5) loop quantum
cosmology and (6) LQG phenomenology. We will say only very little about
these topics here because our main focus is on the mathematical structure of
LQG. Hence we will restrict ourseleves to the salient results and ideas.

5.1 Matter Coupling

We have so far hardly mentioned matter. However, in LQG all (supersymmet-
ric) standard matter can be straightforwardly coupled as well [38, 75]. As far

40 In particular one would like to know how close the approximate kinematical cal-
culations are to the actual calculations on the physical Hilbert space.
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as the kinematics is concerned, the background-independent representation for
the gauge fields of the standard matter is the same as for the gravitational sec-
tor because all the constructions work for an arbitrary compact gauge group.
For Higgs fields, which are located at the vertices of the graph and other
scalar matter, one has a similar construction just that now states are labelled
by points rather than edges. Finally for fermionic matter one uses a standard
Berezin integral kind of construction. As far as the dynamics is concerned,
the key technique of section “Hamiltonian Constraint” applies. All negative
powers of det(q) which appear in the matter terms and which are potentially
singular can be replaced by commutators between fractional powers of the
volume operator and gravitational holonomy operators.

The corresponding contributions to the Hamiltonian constraint have to be
added up and are then squared in the master constraint again without picking
up an UV divergence. It is often criticised that LQG therefore does not impose
any restriction on the allowed matter coupling. While that may turn out to be
phenomenologically attractive for the reasons mentioned in the introduction,
it may actually be technically incorrect: For it could be that the answer to the
question, whether the spectrum of the master constraint contains zero, criti-
cally depends on which type of matter we couple. This is due to the fact that
the shift of the minimum of the spectrum of the master constraint away from
zero is typically due to a kind of normal ordering correction. Now intuition
from ordinary QFT suggests that there must be a critical balance between
bosonic and fermionic matter in order that positive bosonic corrections cancel
negative fermionic ones. Hence, maybe after all the spectrum only contains
zero if we allow for supersymmetric matter. In order to decide this a more
detailed knowledge of the spectrum of the master constraint is required.

5.2 Kinematical Geometric Operators

One of the most cited results of LQG is the discreteness of the spectrum
of kinematical geometric operators such as the volume operator, the area
operator [78, 98] or the length operator [99]. The origin of this pure point
spectrum is that these operators are functions of right invariant vector fields on
various copies of SU(2) and thus they are diagonalised by linear combinations
spin network states with fixed graph and edge spin but varying intertwiners.
Since for fixed edge spin the space of intertwiners is finite dimensional, it
follows that these operators reduce to finite dimensional Hermitean matrices
on these fixed graph and spin subspaces.

However, one should stress that the discreteness of the spectrum is a kine-
matical feature: None of these operators commutes with the spatial diffeomor-
phism or the master constraint. Whether or not these operators retain this
property after having them made true Dirac observables via the relational ma-
chinery depends on the clock matter that is used to deparametrise the theory.
See [100] for a discussion.
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However, if the discreteness of the spectrum is retained then this could be
interpreted as saying that in LQG the geometry is discontinous or distributive
at Planck scale. At macroscopic scales there is a correspondence principle at
work, that is, the difference between subsequent eigenvalues rapidly decays
for large eigenvalues.

5.3 Semiclassical States

As already mentioned, the development of semiclassical tools represent an
important area of research in the development of LQG because they allow to
test whether LQG is really a quantum theory of General Theory and not of
some pathological phase thereof. These developments were hardly mentioned
in [12]. Semiclassical states for LQG [86, 101, 102] have so far been constructed
only for the kinematical Hilbert space because the primary goal was so far
to test the semiclassical limit of the constraint operators which by definition
annihilate physical semiclassical states and thus cannot be tested by them.
However, we will present some ideas of how spatially diffeomorphism invariant
or even physical semiclassical states might be constructed.

The kinematical semiclassical states are actually coherent states and are
all based on the complexifier technique [86] which we will briefly sketch below.

Suppose that we are given a phase space of cotangent bundle structure
M = T ∗A where A is the configuration space. A complexifier is, roughly
speaking, a positive function C on M with the dimension of an action which
grows stronger than linearly as EI → ∞ where EI denotes the momentum
coordinates on M and I ∈ I is a labelling set. Denoting the points in A by
AI we define complex configuration coordinates

ZI =
∞
∑

n=0

in

n!
{AI , C} (1)

explaining the name complexifier. Suppose that the theory can be canonically
quantised such that Ĉ becomes a positive, self-adjoint operator on a Hilbert
space H = L2(A, dμ) of square integrable functions on some distributional
extension A of A with respect to some measure μ. The quantum analogue of
(1) becomes, upon replacing Poisson brackets by commutators divided by i�,
the annihilation operator

ẐI = e−Ĉ/� ÂI eĈ/� (2)

which explains the dimensionality of C. The operators ẐI are mutually com-
muting. The exponentials are defined via the spectral theorem. Let δA be
the δ-distribution with respect to μ with support at A and consider the
distribution

ΨA := e−Ĉ/�δA (3)

Due to the positivity of Ĉ the operator exp(−Ĉ/�) is a smoothening operator,
explaining the required positivity of C. In fact, if H is separable, then (3) will
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be an element of H (normalisable) if C is suitably chosen. Now the growth
condition in the definition of C typically ensures that ΨA is analytic in A
and hence can be analytically continued, as an L2 function, to Z. Denoting
the analytically continued object by ΨZ we obtain immediately the defining
property of a coherent state to be a simultaneous eigenstate of the annihilation
operators

ẐI ΨZ = ZI ΨZ (4)

Notice, however, that if H is not separable then ΨZ is only a coherent distri-
bution even if C has all the required properties.

This construction in fact covers all coherent states that have been consid-
ered for finite or infinite systems of uncoupled harmonic oscillators, in par-
ticular the “classical” coherent states for the Maxwell field (QED). For the
Maxwell field the complexifier turns out to be

C =
1

2e2

∫

R3
d3x δab Ea(−Δ)−1/2Eb (5)

where e is the electric charge, Ea the electric field and Δ the flat space
Laplacian.

In fact, quadratic expressions in the momentum operators always are good
choices for C. However, for LQG we may not use background-dependent ob-
jects such as Δ. In [86] quadratic expressions in the area operator (see below)
were used and semiclassical properties such as peakedness in phase space, in-
finitesimal Ehrenfest property, overcompleteness, semiclassical limit and small
fluctuations were established. Of course, since the kinematical LQG Hilbert
space H is not separable, one must restrict the complexifier construction
to separable subspaces. Natural candidates are the Hilbert spaces Hγ (clo-
sure of the span of SNWFs over γ) and H′

γ (closure of the span of SNWFs
over all subgraphs of γ). The resulting states ΨZ,γ =

∑

γ(s)=γ ΨZ,sTs and
Ψ ′

Z,γ =
∑

γ(s)⊂γ ΨZ,sTs are respectively the spin network or cylindrical projec-
tions of the distributions ΨZ =

∑

s ΨZ,sTs (the sum is over all SNWs) and are
called shadows [102] or cut-offs [86] of ΨZ respectively.41

This graph dependence of the present semiclassical framework of LQG is
an unpleasant feature which so far has prevented one from establishing the
semiclassical limit of graph-changing operators such as the Hamiltonian con-
straint. This is because the Hamiltonian constraint creates new edges whose
fluctuations are not controlled by these graph-dependent states. Hence the
above-mentioned semiclassical properties only hold for graph non-changing
operators and this is why the graph non-changing master constraint is under
much better control than the Hamiltonian constraints. In AQG [77] even the
graph dependence is lost because there is only one fundamental graph.
41 In order to avoid confusion which may arise form corresponding remarks in [12]:

These states are functions of distributional connections A ∈ A labelled by smooth
fields Z. This is even the case for Maxwell coherent states. Hence one can surely
get back the smooth fields of the classical theory in the classical limit.
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Finally, let us address the question of spatially diffeomorphism invariant or
physical states. These Hilbert spaces do not obviously have a representation as
L2 spaces, and moreover it is not easy to find complexifiers with the required
properties which are either spatially diffeomorphism invariant or Dirac observ-
ables. Hence the complexifier idea is not immediately applicable. However, we
have shown that there are (anti-linear) rigging maps ηDiff : D → HDiff and
ηphys : D∗

Diff → Hphys respectively. Now, given a, say, cut-off state ΨZ,γ ,
we obtain spatially diffeomorphism invariant states ΨDiff

Z,γ := ηDiff(ΨZ,γ) and
physical states Ψphys

Z,γ := ηphys◦ηDiff(ΨZ,γ) which can serve as Ansätze for semi-
classical states in the corresponding Hilbert spaces. Whether they continue
to have the desired semiclassical properties with respect to spatially diffeo-
morphism invariant or Dirac observables respectively is the subject of current
research.

5.4 Quantum Black-hole Physics

The main achievement of LQG in this application is to provide a micro-
scopic explanation of the Bekenstein–Hawking entropy, see [103] and refer-
ences therein. The classical starting point is the theory of isolated and dynam-
ical horizons [104] which is somehow a local42 definition of an event horizon
and captures the intuitive idea of a black hole in equilibrium. The notion of
an isolated horizon uses, among other things, the classical field equations and
therefore is a classical concept which is imported into the quantum theory
by hand. In other words, the presence of the black hole is put in classically
leading to an inner boundary of spacetime. It would be more desirable to
have entirely quantum criteria at one’s disposal, see, e.g., [105] for first steps;
however, the following partly semiclassical framework is completely consistent
and satisfactory.

The presence of the inner boundary leads to boundary conditions which,
intuitively speaking, reduce the gauge freedom at the boundary and thus give
rise to boundary degrees of freedom. Remarkably, their dynamics is described
by a U(1) quantum Chern Simons theory. On the other hand, the bulk is
described by LQG. In order to compute the entropy of the black hole one
counts the number of eigenstates of the area operator of the S2 cross sections
S of the horizon43 whose eigenvalues fit into the interval [Ar0− �2P ,Ar0 + �2P ],
where Ar0 is some macroscopic area.

This number would be infinite if S would be an arbitrary surface. Namely
a bulk state is described, near the horizon, by the ordered sets of punctures
of the bulk graph with the surface S and at each such puncture p by the total

42 The usual definition of a black-hole region as the complement of the past of
future null infinity obviously requires the knowledge of the entire spacetime and
is inappropriate to do local physics.

43 Due to the boundary conditions this turns out to be a Dirac observable. In par-
ticular, different cross sections have the same area.
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spin jp to which the edges running into p couple. The area eigenvalue for such
a configuration is given by [78, 98]

λ = �κβ
∑

p

√

jp(jp + 1) (6)

For fixed jp there are an infinite number of spin network states which couple
to total jp (for instance, let two edges run into p with spins j1, j2 = j1 + jp
where j1 is arbitrary). Hence, if we would count bulk states, the entropy would
diverge.

However, the physical reasoning is that what we must count are horizon
states of the Chern Simons theory because the horizon degrees of freedom are
the intrinsic description of the black hole and not the bulk degrees of free-
dom. Due to the quantum boundary conditions, the surface and bulk degrees
of freedom are connected in the following way in the quantum theory: Around
each puncture, the holonomy along the loop of the U(1) Chern Simons connec-
tion must be, roughly speaking, equal to the signed area (flux) of the surface
bounded by the loop. Hence what matters to the surface theory is the number
jp and not the detailed recoupling that created it. In other words, one ignores
the multiplicities of the jp.

With this in mind one can count now the number of eigenvalues. This
would again be infinite if there would not be an area gap, that is, a smallest
non-vanishing area eigenvalue which one can read off from (6). The result is
[106–108]

ln(N) =
β

β0

Ar0
4�2P

+ O(ln(Ar0/�2P )) (7)

where β0 is a numerical constant. This is the Bekenstein Hawking formula
if we set β = β0 which has been suggested to be one way to fix the Im-
mirzi parameter. This would be inconsistent if β0 would depend on the hair
of the black hole. However, the constant β0 is universal, all black holes of
the Schwarzschild–Reissner–Nordstrom–Newman–Kerr family are allowed as
well as Yang–Mills and dilatonic hair. Notice that these black holes are of
astrophysical interest, they are non-supersymmetric and far from extremal, in
contrast to the similar calculations in string theory which heavily depend on
extremality.

In summary, there is an unexpected, consistent interplay between classical
black-hole physics, quantum Chern Simons theory and LQG. Future improve-
ments should include the development of quantum horizons and Hawking
radiation.

5.5 Loop Quantum Cosmology (LQC)

Loop quantum cosmology (LQC) is not the cosmological sector of LQG.44

Rather it is the usual homogeneous minisuperspace quantised by the methods
44 So far there is no satisfactory derivation of LQC from LQG, LQC is constructed

“by analogy”.
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of LQG. This has a kinematical and a dynamical side [109]. As far as the
kinematics is concerned, although LQC has only a finite number of degrees
of freedom one can circumvent the Stone–von Neumann uniqueness theorem
for the representations of the canonical commutation relations by dropping
the assumption of weak continuity of the Weyl operators. This is in complete
analogy to LQG where holonomies but no connections are well defined as op-
erators for precisely the same reason. The corresponding Hilbert space is then
not of the Schrödinger type L2(R, dx) but rather of the Bohr type L2(R, dμ0).
Here R is the Bohr compactification of the real line. It is the counterpart of
A and can be defined as the Gel’fand spectrum of the Abelean C∗ algebra
generated by the functions q �→ exp(iμq). This algebra is called the algebra of
quasiperiodic functions and is the counterpart of Cyl. Finally μ0 is the Haar
measure on R which is in complete analogy to the Ashtekar–Lewandowski
measure of LQG.

On the dynamical side the situation in LQG is matched in the sense that
in the Hamiltonian constraint one cannot work with connections but only
with holonomies. Hence one has to modify the classical constraint by working
with, say sin(μ0q)/μ0 rather than q where μ0 is an arbitrarily small but finite
constant.45 Since also inverse powers of the momentum p conjugate to q appear
in the Hamiltonian constraint one uses the same key kind of key identities as
in LQG such as

irμ0
sgn(p)
|p|1−r = e−iμ0q{|p|r, eiμ0q} (8)

where 0 < r < 1 is a rational number, in order to avoid negative powers of
the p operator in the quantum theory.

The main advantage of this model is that one can carry out almost all
steps of the quantisation programme and compare it with the conventional
Schrödinger quantisation (Wheeler DeWitt theory). The predictions of the
model are in fact quite intriguing: Avoidance of curvature singularities, deter-
ministic quantum gauge flow through the would-be singularity, inflation from
quantum geometry, avoidance of chaos in Bianchi IX cosmologies, recovery of
conventional cosmology at large-scale factor etc. See [76] for a review. The
most mathematically precise treatment can be found in [110].

Of course, one is never sure whether the simplifications that are made
in toy models spoil its predictive power, that is, whether the results of
the toy model continue to hold in the full theory. Partial confirmation of
LQC singularity avoidance results within full LQG can be found in [112],
although via a completly different mechanism. However, at least the model

45 See [109] for arguments to fix the value of μ0. In LQG the analogue of μ0 would
be the regulator ε in the loop attachment; however, in LQG all values of ε are
equivalent due to spatial diffeomorphism invariance. This does not happen in
LQC because in LQC the spatial diffeomorphism group is gauge fixed so that
the appearance of μ0 could be considered as an artefact of the simplicity of the
model.



Loop Quantum Gravity: An Inside View 243

tests important aspects of the full theory, in particular the key identities of
the type (27) without which these spectacular results of LQC would not have
been possible.

Notice that LQG and in particular LQC can easily deal with de Sitter space
kind of situations while this seems to be harder in superstring theory whose
effective low energy limit should be supergravity on de Sitter space. However,
the de Sitter algebra does not admit a positive Hamiltonian indicating that
supergravity on de Sitter space is unstable. This is potentially alarming be-
cause recent observations indicate that the universe currently undergoes a de
Sitter phase.

5.6 LQG Phenomenology

The field of LQG phenomenology has just started to develop, mostly because
in the majority of cases there is no clear-cut derivation of the phenomeno-
logical assumptions made from full LQG. See [113, 114] for a review. One
of the hottest topics in this fields are signatures of Lorentz invariance viola-
tion. A phenomenological description of this could be doubly special relativity
(DSR) [115], a theory in which not only the speed of light but also the Planck
energy is (inertial) frame independent. In 3D it turns out to be possible to
connect DSR [116], non-commutative geometry [117] and LQG in the spin
foam formulation but in 4D this is still elusive.

The intuitive idea behind Lorentz invariance violation in quantum gravity
is the apparently Planck scale discreteness of LQG: If true, then quantum ge-
ometry looks more like a crystal than vacuum even if the gravitational vacuum
state looks like Minkowski space on large scales. Hence there could be non-
trivial dispersion relations for light propagation leading to energy-dependent
time-of-arrival delays of photons of high energies that have travelled a long
distance. One possible source of such signals are γ ray bursts at cosmologi-
cal distances [118, 119] which would be detectable by the GLAST detector
provided that the effect is linear in E/EP where E is the photon energy
and EP the Planck energy. For first steps towards a systematic derivation
from LQG see [120, 121]. Notice that for the five perturbative string theories
on the Minkowski target space Lorentz invariance is built in axiomatically,
hence Lorentz invariance violation could discriminate between LQG and string
theory.

Another hot topic concerns cosmology. To this realm belong the pre-
diction of deviations from the scale invariance of the power spectrum of
the cosmic microwave background radiation (CMBR) [122, 123] using LQC
(related) methods which might be detectable by the WMAP or PLANCK
detectors.

Suffice it to say that this field is largely unexplored and that it needs more
input both from experiments and theory.
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6 Conclusions and Outlook

We hope to have given a brief but self-critical account of the status of LQG
with special focus on the most important issue, the implementation of the
quantum dynamics. In particular, we hope to have addressed most if not all
issues that have been brought up in [12]. We presented them from an “inside”
point of view and showed why the mostly technically correct description in
[12], in our mind, is often unnecessarily sceptic, inconclusive or incomplete.
Notice also that we only reported results well known in the LQG literature.
We emphasise this because the unfamiliar reader may have the impression
that only [12] unveiled the issues discussed there.

We have indicated why non-separable Hilbert spaces are no obstacle in
LQG, they may even be welcome! There has been important progress recently
on the frontiers of the semiclassical limit, the physical Hilbert space, physi-
cal (Dirac) observables, the physical Hamiltonian, the constraint algebra, the
avoidance of anomalies and quantisation ambiguities, the covariant formula-
tion [13] as well as physical applications which were insufficiently appreciated
in [12]. The report given in [12] in many ways displays the field of LQG as
it was a decade ago and thus ignores the progress made since then during
which the field quadrupled in size. We hope to have clarified in this report
that important developments were left out in [12] thus hopefully reducing the
negative flavour conveyed there.

Let us discuss further issues touched upon in [12] which were not yet
mentioned in this chapter:

1. A folklore statement that seems to have entered several physics blogs
is that weakly discontinuous representations of the kind used in LQG
do not work for the harmonic oscillator so why should they work for
more complicated theories? This is the conclusion reached in [124]. As
we will now show, while [124] is technically correct, its physical con-
clusion is completely wrong. In [124] one used a representation dis-
cussed first for QED [125] in order to avoid the negative norm states
of the Gupta–Bleuler formulation. In this representation neither position
q nor momentum p operators are well defined, only the Weyl operators
U(a) = exp(iaq), V (b) = exp(ibp) exist. Hence the usual harmonic os-
cillator Hamiltonian H = q2 + p2 does not exist in this representation.
Consider the substitute Hε = [sin2(εq) + sin2(εp)]/ε2. What is shown in
[124] is that this operator is ill-defined as ε → 0. Is this a surprise? Of
course not, we knew this without calculation because the representation
is not weakly continuous. The divergence of Hε as ε→ 0 in discontinuous
representations is therefore a trivial observation. However, what is physi-
cally much more interesting is the following. Fix an energy level E0 above
which the harmonic oscillator becomes relativistic and thus becomes inap-
propriate to model the correct physics. Let46 a†ε := [sin(qε) + i sin(pε)]/ε.

46 Notice that classically Hε = |aε|2.
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Consider the finite number of observables

bε,n :=
1
n!

(aε)n (a†εaε)(a
†
ε)
n, n = 0, .., N = E0/� (1)

Let Ω0 be the Fock vacuum in the Schrödinger representation and ω
the state underlying the discontinuous representation. Fix a finite mea-
surement precision δ. Since the Fock representation is weakly continu-
ous we find ε0(N, δ) such that | < Ω0, bε,nΩ0 > −n�| < δ/2 for all
ε ≤ ε0. On the other hand, by Fell’s theorem47 we find a trace class
operator ρN,δ in the GNS representation determined by ω such that
|Tr(ρN,δbε0,n)− < Ω0, bε0,nΩ0 > | < δ/2 for all n = 0, 1, .., N . It fol-
lows that with arbitrary, finite precision δ > 0 we find states in the Fock
and discontinuous representations respectively whose energy expectation
values are given with precision δ by the usual value n�. This implies that
the two states cannot be physically distinguished.

In [127, 128] even more was shown:48 There the spectrum of the oper-
ator Hε was studied and the eigenvectors were determined explicitly. One
could show that by tuning ε according to N, δ even the first N eigenvalues
do not differ more than δ from (n+1)�. Moreover, having fixed such an ε,
the non-separable Hilbert space is a direct sum of separable Hε invariant
subspaces, and if we just consider the algebra generated by aε each of them
is superselected. Hence we may restrict to any one of these irreducible sub-
spaces and conclude that the physics of the discontinuous representation
is indistinguishable from the physics of the Schrödinger representation
within the error δ. This should be compared with the statement found
in [124] that in discontinuous representations the physics of the harmonic
oscillator is not correctly reproduced.

2. Actually the paper [124] was triggered by [129] where the following was
shown:
Using discontinuous representations one can quantise the closed bosonic
string in any spacetime dimension without encountering anomalies,
ghosts (negative norm states) or a tachyon state (instabilities). The
representation-independent and purely algebraic no-go theorem of [130]
that the Virasoro anomaly is unavoidable is circumvented by quan-
tising the Witt group Diff(S1)× Diff(S1) rather than its algebra
diff(S1)⊕dif(S1). Since the representation of the Witt group is discon-
tinuous, the infinitesimal generators do not exist and there is no Virasoro

47 The abstract statement is [6]: The folium of a faithful state on a C∗−algebra is
weakly dense in the set of all states. Here the folium of states are all trace class
operators on the corresponding GNS Hilbert space. The theorem applies to the
unique C∗ algebra [126] generated by the Weyl operators U(a), V (b) which we
are considering here. The representations considered in [124, 125] are faithful.

48 In a representation which was continuous in one of p or q but discontinuous in
the other. But similar results hold in this completely discontinuous representation
considered here.
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algebra in this discontinuous representation, exactly like in LQG. How-
ever, as in LQG, a unitary representation of the Witt group is sufficient
in order to obtain the Hilbert space of physical states via group-averaging
techniques and even a representation of the invariant charges [131] of the
closed bosonic string.

Does this mean that the magical dimension D = 26 cannot be seen in
this representation? Of course it can: One way to detect it in the usual
Fock representation of the string is by considering the Poincaré algebra
(in the lightcone gauge) and ask that it closes. For the LQG string [129]
again the Poincaré group is represented unitarily but weakly discontin-
uously. However, we can approximate the generators as above in terms
of the corresponding Weyl operators using some tiny but finite parame-
ter ε. Since these are a finite number of operators in the corresponding
C∗ algebra, an appeal to Fell’s theorem and using continuity of the Weyl
operators in the Fock representation gurantees that we find a state in
the folium of the LQG string with respect to which the expectation val-
ues of the approximate Poincaré generators coincides with their vacuum
(or higher excited state) expectation values in the Fock representation to
arbitrary precision δ.

Thus D = 26 is also hidden in this discontinuous representation, it is
just that for no D there is a quantisation obstruction. Of course, much
still has to be studied for the LQG string, e.g. a formulation of scattering
theory; however, the purpose of [129] was not to propose a phenomeno-
logically interesting model but rather to indicate that D = 26 is not
necessarily sacred but rather a feature of the specific Fock quantisation
used.

3. One sometimes reads the statement [6] that the instantaneous fields
(smeared only in 3D rather than in 4D) are too singular in interacting
quantum field theories. In fact, in Wightman field theories one can read
Haag’s theorem as saying that the representation of the interacting field
algebra (which contains dynamical information) is never unitarily equiv-
alent to the representation of the canonical commutation relations of the
free field algebra (which lacks the information about the interaction). This
seems to imply an obstruction to canonical quantisation where one pre-
cisely starts from a purely kinematical representation of the Poincaré alge-
bra of the instantaneous fields. In LQG this no-go theorem is circumvented
because the quantum field theory that one constructs is not a Wightman
field theory: It is a QFT of a new kind, namely a background-independent
QFT to which Haag’s theorem as stated above does not apply because the
Wightman axioms do not hold. In fact, in LQG the interaction is encoded
in the self-adjoint master constraint which is well (densely) defined.

4. In [12] we find the question, where in LQG does one find the counter terms
[7] of perturbative quantum gravity? More generally, how does one make
contact with perturbative QFT and what role does the renormalisation
group play in LQG, if any? These perturbative questions are hard to
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answer in a theory which is formulated non-perturbatively; however, let
us make a guess:49

Once a physical Hamiltonian such as the one of Sect. 4.4. has been
successfully quantised one can in principle define scattering theory in the
textbook way, that is, one would compute transition amplitudes between
initial and final physical states. This may be hard to do technically but
there is no obstruction in principle. In order to recover perturbation the-
ory around Minkowski space one will consider a physical state (vacuum)
which is a minimal energy state with respect to that Hamiltonian and
peaked on Minkowski space. The physical excitations of that state can be
considered as the analogues of the graviton excitations of the perturba-
tive formulation. Now by construction the transition amplitudes (n point
functions) are finite; however, there will be of course screening effects,
that is, effectively a running of couplings where the energy scale at which
one measures is fed in by the physical state by which one probes a given
operator. This is the way we expect to recover renormalisation effects.

As far as counterterms are concerned, as we have frequently stated,
there are correction terms in all semiclassical computations done so far
which depend on the Planck mass, see e.g. [121] where a finite but large
quantum gravity correction to the cosmological constant50 is computed
which results from photon field propagation on fluctuating spacetimes.
Similar results are expected with respect to graviton propagation. These
counterterm operators are formulated in terms of the canonical fields but
using the field equations one can presumably recast their classical limits
into covariant counterterm Lagrangeans.

Of course it is on the burden of LQG to show that this is really what
happens, but it is not that there are no ideas for possible mechanisms.

We will now answer a number of frequently asked questions which one can
find in [12]:

1. Is there only mathematical progress in LQG?
A continuously updated and fairly complete list of all LQG publications to
date can be found in [132]. A brief look at this list will show that there are
papers of all levels of rigour and that mathematically more sophisticated
papers were motivated and driven by less rigorous papers which started
from a physical idea. It is true that in LQG one puts stress on mathemat-
ical rigour. The reason is that developing background-independent QFTs
means walking on terra incognita. Hence, one does not have the luxury to
be cavalier about mathematical details as in background-dependent QFTs

49 Of course, one could ask whether the question is meaningful if quantum gravity,
which is believed to be non-renormalisable, simply does not admit a perturbative
formulation. However, it is believed that perturbative quantum gravity does make
sense as an effective theory.

50 The cosmological “constant” therefore becomes dynamical.
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where well-established theorems ensure that there are rigorous versions of
formal calculations.

Section 5 should have indicated that current research is focussed on
hot research topics such as semiclassical quantum gravity (contact with
QFT on curved spacetimes), quantum cosmology and quantum black-hole
physics. These results together with the huge body of work on spin foam
models were hardly mentioned in [12]; see, however, [13]. Ignoring this
research performed over the past 10 years means giving an out-of-date
presentation of LQG which would be similar to writing a review on string
theory without mentioning D-branes, M-theory and the landscape.

Notice also that being a much smaller and younger field than string
theory or high energy physics51 which in addition cannot just use the
techniques from ordinary particle physics but in fact must first develop its
own mathematical framework from scratch, the amount of results obtained
so far is naturally smaller due to lack of man power.

2. Has there anything been gained as compared to the Wheeler–DeWitt
framework?
Any serious theoretical physicist will confirm that it is almost a mira-
cle that one can tame mathematical monsters such as the area, volume,
Hamiltonian constraint or master constraint operator at all. These op-
erators are integrals over delicate, non-polynomial functions of operator-
valued distributions evaluated at the same point which are hopelessely
singular in usual background-dependent Fock representations. Moreover,
not only can one give mathematcial sense to them, they are even free of UV
divergences. This is the beauty of background independence and provides
a precise implementation of the old physical idea that quantum gravity
should provide the natural regulator of ordinary QFT UV divergences.

For the first time one can write down a concrete, mathematically well-
defined proposal for the Hamiltonian or master constraint and study its
physical properties. For the first time one can actually construct rigorous
solutions thereof. For the first time one can precisely define a kinematical,
spatially diffeomorphism invariant or physical Hilbert space. For the first
time one could show that the semiclassical limit of at least the graph non-
changing master constraint is the correct one with respect to rigorously
defined, kinematical coherent states.52

It is true that not all questions have been answered in connection with
the quantum dynamics and research on it will continue to occupy many
researchers during many years to come. However, what is asked for in [12]
is too much: Nobody expects that one can completely solve the theory. We
cannot even solve classical general relativity completely and we will prob-
ably never be able to. General relativity and even more so LQG are not

51 LQG is the focal point of only an order of 102 reserachers worldwide.
52 Notice that it is meaningless the semiclassical limit of a constraint operator with

physical coherent states which by definition are in its (generalised) kernel.
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integrable systems such as string theory on Minkowski background target
space which is mathematically relatively trivial as a field theory. Even to-
day people working in classical general relativity struggle to get analytical
results for the gravitational waves radiated by, say, a black-hole merger.
The problem was posed almost half a century ago but recent progress is
mostly due to increasing computing power. Gravitational waves is just a
tiny sector of classical general relativity and in LQG we also must hope
that we can at least analyse the theory in sufficient detail in those sectors.
In [12] the authors ask for (approximately) physical semiclassical states
that enable one to investigate the QFT on curved spacetimes limit of the
theory. We claim that these exist: Kinematical coherent states have been
introduced in [86]. We can choose to have them peaked on the constraint
surface and then those states solve the master constraint approximately
[77], that is, ||̂Mψ|| ≈ 0. These states will enable us to perform semiclas-
sical perturbation theory as described in [77] and the non-diagonisability
of the volume operator poses absolutely no problem here.

Finally, again a glance at [132] reveals that in LQG there is linear
progress on the quantisation programme outlined in Sect. 3 over the past
20 years. One never changed the rules of that programme which means
that the velocity of progress is naturally decreasing as one faces the ever
tougher steps of that programme. We just mention that because from [12]
one could sometimes get the impression that what is criticised is that
researchers in LQG did not identify the open problems mentioned in [12].
They did as one can see from the publications, but some of the problems
simply have not yet been solved and are topics of current research. That
does not mean that they cannot be solved at all and so far every hurdle
in LQG was taken.

3. Is general covariance broken in LQG?
When reading [12] one may get the impression that spacetime diffeomor-
phism invariance is broken right from the beginning just because one per-
forms a 3+1 split of the action. This impression is wrong. As we have tried
to explain in Sect. 2 the constraints require that physical observables are
idependent of the foliation that one introduces in the canonical formula-
tion. This is the same in string theory where the Witt constraints require
worldsheet diffeomorphism invariance of physical observables. These con-
straints are implemented in the LQG Hilbert space and their kernel defines
spacetime diffeomorphism invariant states. The question of off-shell versus
on-shell closure is still open for the Hamiltonian constraint. This is why
the master constraint programme was introduced as a possible alternative
which seems to work in the sense that for the master constraint one could
show that these constraints and their algebra have the correct classical
limit [77]. They are maybe implemented anomalously in the master con-
straint but by subtracting from the master constraint the minimum of the
spectrum the anomaly can be cancelled which corresponds to some kind of
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normal ordering. Notice that this is an off-shell closure of the constraints
as asked for in [12].

In [12] the authors illustrate the importance of on-shell versus off-shell
closure by multiplying a given set of non-anomalous quantum constraints
with structure constants with a central operator. These modified con-
straints still close on-shell while the off-shell algebra would now close only
with structure functions. However, there are now possibly extra solutions,
namely those in the kernel of the central operator, hence the physical
Hilbert space would suffer from an infinite number of ambiguities. We
find this example inconclusive for the following reason: In LQG one did
not randomly multiply the Hamiltonian constraint by something else but
rather just used the classical expression and directly quantised it by rea-
sonable regularisation techniques. Furthermore, when modifying the clas-
sical constraints by multiplying it with a Dirac observable, the modified
constraints define the same constraint surface as the original ones only
where the Dirac observable does not vanish. Hence the extra solutions in
the kernel of the central operator are physically not allowed and therefore,
in this example at least, the modified quantum constraints in fact define
the same physical Hilbert space as the original constraints.

4. Does non-separability of the Hilbert space prevent the emergence of the
continuum in the semiclassical limit?
In [12] the authors point out the non-separability of the kinematical
Hilbert space which originates from the weak discontinuity of the holon-
omy operators. They call this the pulverisation of the continuum in the
sense that all, even infinitesimally different, edges lead to orthogonal spin
network states. The only topology on the set graphs with respect to which
the scalar product is continuous is the discrete topology (every subset is
open). They then ask whether the continuum can be recovered in the
semiclassical limit. The answer is in the affirmative: The approximately
physical states [86] (kinematical coherent states which are peaked on the
constraint surface of the phase space) are labelled by smooth classical
fields and the corresponding expectation values of physical operators such
as the master constraint depend even smoothly on those fields, not only
continuously, see, e.g., [77].

5. Is the ambiguity in the Hamiltonian constraint comparable to non-
renormlisability of perturbative quantum gravity?
Definitely not:
First of all there is a crucial qualitative difference: Perturbative quan-
tum gravity cannot make sense as a fundamental theory because the per-
turbation series divereges for all possible choices of the renormalisation
constants. LQG is a finite theory for any choice of the ambiguity param-
eters. Next, the countably infinite number of renormalisation constants
in perturbative quantum gravity take continuous values so that the num-
ber of ambiguities is uncountably infinite while the physical Hilbert space
of LQG depends only on a discrete number of ambiguities. Finally, in
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perturbative quantum gravity all values of the infinite number of renor-
malisation constants are, a priori, all equally natural while in LQG all of
the discrete choices are pathological except for a finite number. As we have
explained, without some notion of naturality, even ordinary QFT suffers
from an infinite number of ambiguities (such as all possible discretisations
of Yang–Mills theories on all possible lattices). Hence applying natural-
ness, the amount of ambiguity in LQG reduces to a finite number of ambi-
guities which is comparable to the degree of ambiguity of a renormalisable
ordinary quantum field theory.

In the appendix the interested reader can find an example where the neces-
sity of mathematical machinery is illustrated in a concrete physical question,
namely whether the so-called “Kodama state” is a physical state of LQG.
This would not be possible without it and therefore exemplifies “what has
been gained”.
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Appendix

The Kodama State

We end this chapter by displaying a concrete example which illustrates the
necessity of all the mathematical machinery in order to reach a conclusive
answer for precise questions. The example is the so-called Kodama state
[133] which is frequently claimed to be an exact solution to all constraints
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of LQG [134]. In fact the Kodama state has attracted much attention in
the early days of LQG (see [135] and references therein) because of its for-
mal connection with the Jones polynomial [136], which would therefore seem
to be an exact solution (in the loop representation) of all the constraints
of LQG.

We will now show that this does not hold for various reasons. To see
what is going on, consider pure gravity with a cosmological constant. After
multiplying the Hamiltonian constraint by the factor

√

det(q) it is given by

H̃ = εjklεabcE
a
jE

b
k[B

Cc
l + ΛEc

l ] (1)

where Λ is the cosmological constant and BCc
j = εabcFCj

ab /2 the magnetic field
of the complex connection AC which is the pull-back to σ of the self-dual part
of the spin connection (annihilating the tetrad).

The idea underlying the Kodama state is that the SL(2,C) Chern–Simons
action

SCS[AC] :=
∫

σ

Tr(FC ∧AC − 1
3
AC ∧AC ∧AC) (2)

is the generating functional of the magnetic field, that is, δSCS/δA
Cj
a (x) =

BCa
j (x) where the functional derivative is in the sense of the space of smooth

SL(2,C) connections AC. Now the canonical brackets {Ea
j (x), ACk

b (y)} =
iκδ(x, y) suggest to formally define a Hilbert space HC = L2(AC, [dAC dAC])
of square integrable, holomorphic functions on AC with respect to formal
Lebesgue measure and to represent ACj

a (x) as a multiplication operator and
Ea
j (x) as −�2P δ/δA

Cj
a (x). This formally satisfies the canonical commutation

relations.
As is well known, the Chern–Simons action is invariant under infinitesimal

gauge transformations, and as an integral of a three form over all of σ it is also
spatially diffeomorphsim invariant. Moreover, in the ordering (1) the Kodama
state

ΨKodama = e
1

Λ
2p
SCS

(3)

is annihilated by the Hamiltonian constraint. This is exciting because the nine
conditions B = −ΛE satisfied by this state is easily seen to correspond to de
Sitter space for the appropriate sign of Λ [134]. Hence, the Kodama state
could be argued to correspond to the de Sitter vacuum of LQG.

There are several flaws with this formal calculation:

A. Adjointness relations
The formal representation of the canonical commutation relations just
outlined is not a representation of the ∗algebra generated by E, AC, that
is, the adjointness relations are not satisfied. These demand that E is self-
adjoint and that AC+AC = 2Γ (E) where Γ is the spin connection of E. It
is clear that the “measure” [dACdAC] cannot implement these adjointness
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relations, hence we have to incorporate a formal kernel K(AC, AC). A
formal Fourier transform calculation [2] reveals that

K(AC, AC) =
∫

[dE] exp(i
∫

σ

d3x [
ACj
a + ACj

a

2
− Γ ja ]Ea

j (4)

Even without specifying the details of this functional integral, with this
kernel the inner product is no longer positive (semi) definite.

B. Euclidean gravity
Suppose we replace AC by a real connection. This formally corresponds
to Euclidean gravity and now the formal Hilbert space would be H =
L2(A, [dA]) which does give rise to a formal representation of the algebra
underlying A,E if Ea

j (x) = i�2P δ/δA
j
a(x). Now the Kodama state becomes

ΨKodama = e
i

Λ
2p
SCS

(5)

Being a pure phase, it is not normalisable in that formal inner product.
C. Measurability

Now consider instead the rigorous Ashtekar–Isham–Lewandowski repre-
sentation L2(A, dμ0). Certainly the operator corresponding to (1) does not
exist in that representation but let us forget about the origin of ΨKodama

and just ask whether it defines an element of that Hilbert space. Be-
ing a pure phase it is formally normalisable because the measure μ0 is
normalised. However, the question is whether the Kodama state is a mea-
surable function53 in order that we can compute inner products between
the Kodama state and, say, spin network functions. It is easy to see that
this is not the case. For instance this follows from the fact that if we
would triangulate the integral over the the Chern–Simons action in order
to replace the integral by a Riemann sum over certain holonomies (these
are measurable functions) and consider the infinite refinement limit, then
in this limit the Kodama state has non-vanishing inner product with an
uncountably infinite number of spin network functions. Thus, it is not
normalisable when viewed as a proper L2 function. This can also be in-
terpreted differently: Recall that L2 functions are only defined up to sets
of measure zero. The Chern–Simons action is a priori defined only on
the measure zero subset of smooth connections. The extension to A that
we just tried by representing it as a linear combination of spin network
functions is no longer a phase.

D. Distributional solution
One could interpret the last item as saying that the Chern–Simons state
defines a rigorous element of D∗ and now the question is whether it is

53 A function is said to be measurable if the preimages of open subsets of C are
measurable subsets. In our case, the measurable states are generated by the Borel
sets of A.
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annihilated by the rigorously defined dual of the Hamiltonian constraint–
constructed in Sect. 4. It is easy to see that this is not the case because the
Hamiltonian constraint with a cosmological constant term, although its
dual formally acquires the ordering as in (1), is not proportional to B+ΛE
because the volume operator that enters the cosmological constant term
is not quantised in the form Ea

j e
j
a but rather as

√

det(|E|). One could of
course write the smeared constraint in the form

H(N) =
∫

σ

N Tr([F + Λ ∗ E] ∧ {A, V }) (6)

where V is the volume functional and proceed as in Sect. 4 although it
would be somewhat awkward to define the volume operator in this way.
However, even if this would work, this would still only define a solution
to the Euclidean constraint.

This discussion hopefully illustrates the physical importance of the mathemat-
ical notions introduced and shows that LQG has been brought to a level of
mathematcal rigour that allows to actually answer physical questions. With-
out it we could not have decided if and in which sense the Kodama state is a
physical state.
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canonical general relativity. Ann. Phys. 174 (1987), 463. 193
25. P. A. M. Dirac. Lectures on Quantum Mechanics, (Belfer Graduate School of

Science, Yeshiva University Press, New York, 1964). [189, 193]
26. M. Henneaux and C. Teitelboim. Quantization of Gauge Systems, (Princeton

University Press, Princeton, 1992). [189, 203, 235]
27. S. A. Hojman, K. Kuchar and C. Teitelboim. Geometrodynamics regained.

Annals Phys. 96 (1976), 88–135. 190
28. T. Thiemann. The LQG string: loop quantum gravity quantization of

string theory I: Flat target space. Class. Quant. Grav. 23 (2006),
1923–1970. [hep-th/0401172] [190, 191]



256 T. Thiemann

29. N. M. J. Woodhouse. Geometric Quantization, 2nd. ed., (Clarendon Press,
Oxford, 1991). 191

30. C. Rovelli. What is observable in classical and quantum gravity? Class. Quan-
tum Grav. 8 (1991), 297–316.
C. Rovelli. Quantum reference systems. Class. Quantum Grav. 8 (1991),
317–332.
C. Rovelli. Time in quantum gravity: physics beyond the Schrodinger regime.
Phys. Rev. D43 (1991), 442–456.
C. Rovelli. Quantum mechanics without time: a model. Phys. Rev. D42 (1990),
2638–2646. 191

31. B. Dittrich. Partial and complete observables for Hamiltonian constrained sys-
tems. [gr-qc/0411013]
B. Dittrich. Partial and complete observables for canonical general relativity.
[gr-qc/0507106] 191

32. T. Thiemann. Reduced phase space quantization and Dirac observables. Class.
Quant. Grav. 23 (2006), 1163–1180. [gr-qc/0411031] [191, 192]

33. T. Thiemann. Solving the problem of time in general relativity and cosmology
with phantoms and k-essence. [astro-ph/0607380] [191, 192, 233]

34. B. Dittrich and T. Thiemann. Testing the master constraint programme for
loop quantum gravity: I. General framework. Class. Quant. Grav. 23 (2006),
1025–1066. [gr-qc/0411138] [194, 196, 198, 215]

35. B. Dittrich and T. Thiemann. Testing the master constraint programme for
loop quantum gravity: II. Finite – dimensional systems. Class. Quant. Grav.
23 (2006), 1067–1088. [gr-qc/0411139]
B. Dittrich and T. Thiemann. Testing the master constraint programme for
loop quantum gravity: III. SL(2R) models. Class. Quant. Grav. 23 (2006),
1089–1120. [gr-qc/0411140]
B. Dittrich and T. Thiemann. Testing the master constraint programme for
loop quantum gravity: IV. Free field theories. Class. Quant. Grav. 23 (2006),
1121–1142. [gr-qc/0411141]
B. Dittrich and T. Thiemann. Testing the master constraint programme for
loop quantum gravity: V. Interacting field theories. Class. Quant. Grav. 23
(2006), 1143–1162. [gr-qc/0411142] [194, 196, 215, 227]

36. J. Klauder. Universal procedure for enforcing quantum constraints. Nucl. Phys.
B547 (1999), 397–412. [hep-th/9901010]
A. Kempf and J. R. Klauder, On the implementation of constraints through
projection operators, J. Phys. A34 (2001), 1019–1036. [quant-ph/0009072] 196

37. D. Giulini and D. Marolf. On the generality of refined algebraic quantization.
Class. Quant. Grav. 16 (1999), 2479–2488. [gr-qc/9812024] 197

38. T. Thiemann. Quantum Spin Dynamics (QSD): II. The kernel of the Wheeler-
DeWitt constraint operator. Class. Quantum Grav. 15 (1998), 875–905.
[gr-qc/9606090]
T. Thiemann. Quantum Spin Dynamics (QSD): III. Quantum constraint alge-
bra and physical scalar product in quantum general relativity. Class. Quantum
Grav. 15 (1998), 1207–1247. [gr-qc/9705017]
T. Thiemann. Quantum Spin Dynamics (QSD): IV. 2+1 Euclidean quantum
gravity as a model to test 3+1 Lorentzian quantum gravity. Class. Quantum
Grav. 15 (1998), 1249–1280. [gr-qc/9705018]



Loop Quantum Gravity: An Inside View 257

T. Thiemann. Quantum Spin Dynamics (QSD): V. Quantum grav-
ity as the natural regulator of the Hamiltonian constraint of matter
quantum field theories. Class. Quantum Grav. 15 (1998), 1281–1314.
[gr-qc/9705019]
T. Thiemann. Quantum Spin Dynamics (QSD): VI. Quantum Poincaré algebra
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1 Introduction

Quantized general relativity, based upon the Einstein–Hilbert action

SEH =
1

16πG

∫

d4x
√−g {−R + 2Λ} , (1.1)

is well known to be perturbatively nonrenormalizable. This has led to the
widespread belief that a straightforward quantization of the metric degrees
of freedom cannot lead to a mathematically consistent and predictive funda-
mental theory valid down to arbitrarily small spacetime distances. Einstein
gravity was rather considered merely an effective theory whose range of ap-
plicability is limited to a phenomenological description of gravitational effects
at distances much larger than the Planck length.

In particle physics one usually considers a theory fundamental if it is per-
turbatively renormalizable. The virtue of such models is that one can “hide”
their infinities in only finitely many basic parameters (masses, gauge cou-
plings, etc.) which are intrinsically undetermined within the theory and whose
value must be taken from the experiment. All other couplings are then well-
defined computable functions of those few parameters. In nonrenormalizable
effective theories, on the other hand, the divergence structure is such that
increasing orders of the loop expansion require an increasing number of new
counter terms and, as a consequence, of undetermined free parameters. Typi-
cally, at high energies, all these unknown parameters enter on an equal footing
which threatens the predictivity of the theory.

However, there are examples of field theories which do “exist” as funda-
mental theories despite their perturbative nonrenormalizability [1, 2]. These
models are “nonperturbatively renormalizable” along the lines of Wilson’s
modern formulation of renormalization theory [1]. They are constructed by
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performing the limit of infinite ultraviolet (UV) cutoff (“continuum limit”)
at a non-Gaussian renormalization group fixed point g∗i in the space {gi} of
all (dimensionless, essential) couplings gi which parametrize a general action
functional. This construction has to be contrasted with the standard pertur-
bative renormalization which, at least implicitly, is based upon the Gaussian
fixed point at which all couplings vanish, g∗i = 0 [3, 4].

2 Asymptotic Safety

In his “asymptotic safety” scenario Weinberg [5] has put forward the idea that,
perhaps, a quantum field theory of gravity can be constructed nonperturba-
tively by invoking a non-Gaussian UV fixed point (g∗i �= 0). The resulting
theory would be “asymptotically safe” in the sense that at high energies un-
physical singularities are likely to be absent.

The arena in which the idea is formulated is the so-called “theory space”.
By definition, it is the space of all action functionals A[ · ] which depend on a
given set of fields and are invariant under certain symmetries. Hence the theory
space {A[ · ]} is fixed once the field contents and the symmetries are fixed.
The infinitely many generalized couplings gi needed to parametrize a general
action functional are local coordinates on theory space. In gravity one deals
with functionals A[gμν , · · · ] which are required to depend on the metric in a
diffeomorphism invariant way. (The dots represent matter fields and possibly
background fields introduced for technical convenience.) Theory space carries
a crucial geometric structure, namely a vector field which encodes the effect of
a Kadanoff–Wilson-type block spin or “coarse graining” procedure, suitably
reformulated in the continuum. The components βi of this vector field are the
beta-functions of the couplings gi. They describe the dependence of gi ≡ gi(k)
on the coarse graining scale k:

k ∂kgi = βi(g1, g2, · · · ) (2.1)

By definition, k is taken to be a mass scale. Roughly speaking the running
couplings gi(k) describe the dynamics of field averages, the averaging volume
having a linear extension of the order 1/k. The gi(k)’s should be thought
of as parametrizing a running action functional Γk[gμν , · · · ]. By definition,
the renormalization group (RG) trajectories, i.e. the solutions to the “exact
renormalization group equation” (2.1) are the integral curves of the vector
field β ≡ (βi) defining the “RG flow”.

The asymptotic safety scenario assumes that β has a zero at a point with
coordinates g∗i not all of which are zero. Given such a non-Gaussian fixed
point (NGFP) of the RG flow one defines its UV critical surface, or unstable
manifold SUV to consist of all points of theory space which are attracted
into it in the limit k → ∞. (Note that increasing k amounts to going in the
direction opposite to the natural coarse graining flow.) The dimensionality
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dim (SUV) ≡ ΔUV is given by the number of attractive (for increasing cutoff k)
directions in the space of couplings. The linearized flow near the fixed point
is governed by the Jacobi matrix B = (Bij), Bij ≡ ∂jβi(g∗):

k ∂k gi(k) =
∑

j

Bij (gj(k)− g∗j) . (2.2)

The general solution to this equation reads

gi(k) = g∗i +
∑

I

CI V
I
i

(

k0

k

)θI

(2.3)

where the V I ’s are the right-eigenvectors of B with (complex) eigenvalues
−θI . Furthermore, k0 is a fixed reference scale, and the CI ’s are constants
of integration. If gi(k) is to approach g∗i in the infinite cutoff limit k → ∞
we must set CI = 0 for all I with Re θI < 0. Hence the dimensionality ΔUV

equals the number of B-eigenvalues with a negative real part, i.e. the number
of θI ’s with a positive real part.

A specific quantum field theory is defined by an RG trajectory which ex-
ists globally, i.e. is well behaved all the way down from “k = ∞” in the UV to
k = 0 in the IR. The key idea of asymptotic safety is to base the theory upon
one of the trajectories running inside the hypersurface SUV since these trajec-
tories are manifestly well behaved and free from fatal singularities (blowing
up couplings, etc.) in the large-k limit. Moreover, a theory based upon a tra-
jectory inside a finite dimensional SUV has predictive power. The problem of
an increasing number of counter terms and undetermined parameters which
plagues effective theories does not arise.

In fact, in order to select a specific quantum theory we have to fix ΔUV

free parameters which are not predicted by the theory and must be taken from
experiment. When we lower the cutoff, only ΔUV parameters in the initial ac-
tion are “relevant”, and fixing these parameters amounts to picking a specific
trajectory on SUV; the remaining “irrelevant” parameters are all attracted to-
wards SUV automatically. Therefore the theory has the more predictive power,
the smaller the dimensionality of SUV, i.e. the fewer UV attractive eigendi-
rections the non-Gaussian fixed point has. If ΔUV < ∞, the quantum field
theory thus constructed is as predictive as a perturbatively renormalizable
model with ΔUV “renormalizable couplings”, i.e. couplings relevant at the
Gaussian fixed point.

It is plausible that SUV is indeed finite dimensional. If the dimensionless
gi’s arise as gi(k) = k−di ḡi(k) by rescaling (with the cutoff k) the original
couplings ḡi with mass dimensions di, then βi = −digi + · · · and Bij =
−diδij+ · · · where the dots stand for the quantum corrections. Ignoring them,
θi = di + · · · , and ΔUV equals the number of positive di’s. Since adding
derivatives or powers of fields to a monomial in the action always lowers di,
there can be at most a finite number of positive di’s and, therefore, of negative
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eigenvalues of B. Thus, barring the presumably rather exotic possibility that
the quantum corrections change the signs of infinitely many elements in B, the
dimensionality of SUV is finite [5]. Since asymptotic safety is necessarily linked
to large anomalous dimensions this argument has to be taken with a grain of
salt, of course. Nevertheless, the available calculations seem to support this
picture.

We emphasize that, in general, the UV fixed point on which the above
construction is based, if it exists, has no reason to be of the simple Einstein–
Hilbert form (1.1). The initial point of the RG trajectory Γk→∞ is expected to
contain many more invariants, both local (curvature polynomials) and nonlo-
cal ones. For this reason the asymptotic safety scenario is not a quantization
of general relativity, and it cannot be compared in this respect to the loop
quantum gravity approach, for instance. In a conventional field theory set-
ting the functional Γk→∞ corresponds to the bare (or “classical”) action S
which usually can be chosen (almost) freely. It is one of the many attractive
features of the asymptotic safety scenario that the bare action is fixed by
the theory itself and actually can be computed, namely by searching for zeros
of β. In this respect it has, almost by construction, a degree of predictivity
which cannot be reached by any scheme trying to quantize a given classical
action.

3 RG Flow of the Effective Average Action

During the past few years, the asymptotic safety scenario in Quantum Einstein
Gravity (QEG) has been mostly investigated in the framework of the effective
average action [6]-[21], [4], a specific formulation of the Wilsonian RG which
originally was developed for theories in flat space [22–24] and has been first
applied to gravity in [6].

Quite generally, the effective average action Γk is a coarse-grained free
energy functional that describes the behavior of the theory at the mass scale
k. It contains the quantum effects of all fluctuations of the dynamical variables
with momenta larger than k, but not of those with momenta smaller than k.
As k is decreased, an increasing number of degrees of freedom is integrated
out. The method thus complies, at an intuitive level, with the coarse-graining
picture of the previous section. The successive averaging of the fluctuation
variable is achieved by a k-dependent IR cutoff term ΔkS which is added to the
classical action in the standard Euclidean functional integral. This term gives a
momentum-dependent mass squareRk(p2) to the field modes with momentum
p. It is designed to vanish if p2 � k2, but suppresses the contributions of the
modes with p2 < k2 to the path integral. When regarded as a function of k, Γk
describes a curve in theory space that interpolates between the classical action
S = Γk→∞ and the conventional effective action Γ = Γk=0. The change of Γk
induced by an infinitesimal change of k is described by a functional differential
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equation, the exact RG equation. In a symbolic notation it reads

k ∂kΓk =
1
2

STr
[

(

Γ
(2)
k +Rk

)−1

k ∂kRk
]

. (3.1)

For a detailed discussion of this equation we must refer to the literature [6].
Suffice it to say that, expanding Γk[gμν , · · · ] in terms of diffeomorphism in-
variant field monomials Ii[gμν , · · · ] with coefficients gi(k), (3.1) assumes the
component form (2.1).

In general it is impossible to find exact solutions to (3.1) and we are
forced to rely upon approximations. A powerful nonperturbative approxima-
tion scheme is the truncation of theory space where the RG flow is projected
onto a finite-dimensional subspace. In practice one makes an ansatz for Γk
that comprises only a few couplings and inserts it into the RG equation. This
leads to a, now finite, set of coupled differential equations of the form (2.1).

The simplest approximation one might try is the “Einstein–Hilbert trun-
cation” [6, 8] defined by the ansatz

Γk[gμν ] = (16πGk)
−1

∫

ddx
√
g
{−R(g) + 2λ̄k

}

(3.2)

It applies to a d-dimensional Euclidean spacetime and involves only the cos-
mological constant λ̄k and the Newton constant Gk as running parameters.
Inserting (3.2) into the RG equation (3.1) one obtains a set of two β-functions
(βλ,βg) for the dimensionless cosmological constant λk ≡ k−2λ̄k and the di-
mensionless Newton constant gk ≡ kd−2Gk, respectively. They describe a
two-dimensional RG flow on the plane with coordinates g1 ≡ λ and g2 ≡ g.
At a fixed point (λ∗, g∗), both β-functions vanish simultaneously. In the
Einstein–Hilbert truncation there exists both a trivial Gaussian fixed point
(GFP) at λ∗ = g∗ = 0 and, quite remarkably, also a UV attractive NGFP
at (λ∗, g∗) �= (0, 0). In Fig. 1 we show part of the g-λ theory space and the
corresponding RG flow for d = 4. The trajectories are obtained by numerically
integrating the differential equations k ∂kλ = βλ(λ, g) and k ∂kg = βg(λ, g).
The arrows point in the direction of increasing coarse graining, i.e. from the
UV towards the IR. We observe that three types of trajectories emanate from
the NGFP: those of Type Ia (Type IIIa) run towards negative (positive) cos-
mological constants, while the “separatrix”, the unique trajectory (of Type
IIa) crossing over from the NGFP to the GFP, has a vanishing cosmological
constant in the IR. The flow is defined on the half-plane λ < 1/2 only; it can-
not be continued beyond λ = 1/2 as the β-functions become singular there.
In fact, the Type IIIa-trajectories cannot be integrated down to k = 0 within
the Einstein–Hilbert approximation. They terminate at a nonzero kterm where
they run into the λ = 1/2−singularity. Near kterm a more general truncation
is needed in order to continue the flow.

In Weinberg’s original paper [5] the asymptotic safety idea was tested in
d = 2 + ε dimensions where 0 < ε � 1 was chosen so that the β-functions
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Fig. 1. Part of theory space of the Einstein–Hilbert truncation with its RG flow.
The arrows point in the direction of decreasing values of k. The flow is dominated
by an NGFP in the first quadrant and a trivial one at the origin. (From [9].)

(actually βg only) could be found by an ε-expansion. Before the advent of the
exact RG equations no practical tool was known which would have allowed
a nonperturbative calculation of the β-functions in the physically interesting
case of d = 4 spacetime dimensions. However, as we saw above, the effective
average action in the Einstein–Hilbert approximation does indeed predict the
existence of an NGFP in a nonperturbative setting. It was first analyzed in
[13, 8, 9], and also first investigations of its possible role in black-hole physics
[25] and cosmology [26, 27] were performed already.

The detailed analyses of [8, 9] demonstrated that the NGFP found has
all the properties necessary for asymptotic safety. In particular one has a
pair of complex conjugate critical exponents θ′ ± i θ′′ with θ′ > 0, implying
that the NGFP, for k → ∞, attracts all trajectories in the half-plane g > 0.
(The lower half-plane g < 0 is unphysical probably since it corresponds to
a negative Newton constant.) Because of the nonvanishing imaginary part
θ′′ �= 0, all trajectories spiral around the NGFP before hitting it.

The question of crucial importance is whether the fixed point predicted
by the Einstein–Hilbert truncation actually approximates a fixed point in the
exact theory, or whether it is an artifact of the truncation. In [8–10] evidence
was found, which, in our opinion, strongly supports the hypothesis that there
does indeed exist an NGFP in the exact four-dimensional theory, with exactly
the properties required for the asymptotic safety scenario. In these investiga-
tions the reliability of the Einstein–Hilbert truncation was tested both by
analyzing the cutoff scheme-dependence within this truncation [8, 9] and by
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generalizing the truncation ansatz itself [10]. The idea behind the first method
is as follows.

The cutoff operator Rk(p2) is specified by a matrix in field space and a
“shape function” R(0)(p2/k2) which describes the details of how the modes get
suppressed in the IR when p2 drops below k2. We checked the cutoff scheme
dependence of the various quantities of interest both by looking at their de-
pendence on the function R(0) and comparing two different matrix structures.
Universal quantities are particularly important in this respect because, by
definition, they are strictly cutoff scheme-independent in the exact theory.
Any truncation leads to a residual scheme dependence of these quantities,
however. Its magnitude is a natural indicator for the quality of the truncation
[28]. Typical examples of universal quantities are the critical exponents θI .
The existence or nonexistence of a fixed point is also a universal, scheme-
independent feature, but its precise location in parameter space is scheme
dependent. Nevertheless it can be shown that, in d = 4, the product g∗λ∗
must be universal [8] while g∗ and λ∗ separately are not.

The detailed numerical analysis of the Einstein–Hilbert RG flow near the
NGFP [8, 9] shows that the universal quantities, in particular the product
g∗ λ∗, are indeed scheme independent at a quite impressive level of accuracy.
As the many numerical “miracles” which lead to the almost perfect cancella-
tion of the R(0)-dependence would have no reason to occur if there was not a
fixed point in the exact theory as an organizing principle, the results of this
analysis can be considered strong evidence in favor of a fixed point in the
exact, untruncated theory.

The ultimate justification of any truncation is that when one adds further
terms to it its physical predictions do not change significantly any more. As
a first step towards testing the stability of the Einstein–Hilbert truncation
against the inclusion of other invariants [10] we took a (curvature)2-term into
account:

Γk[gμν ] =
∫

ddx
√
g
{

(16πGk)
−1 [−R(g) + 2λ̄k

]

+ β̄kR
2(g)

}

(3.3)

Inserting (3.3) into the functional RG equation yields a set of β-functions
(βλ,βg,ββ) for the dimensionless couplings λk, gk and βk ≡ k4−dβ̄k. They
describe the RG flow on the three-dimensional λ-g-β-space. Despite the ex-
treme algebraic complexity of the three β-functions it was possible to show
[10–12] that they, too, admit an NGFP (λ∗, g∗, β∗) with exactly the properties
needed for asymptotic safety. In particular it turned out to be UV attractive
in all three directions. The value of β∗ is extremely tiny, and close to the
NGFP the projection of the three-dimensional flow onto the λ-g-subspace is
very well described by the Einstein–Hilbert truncation which ignores the third
direction from the outset. The λ∗- and g∗-values and the critical exponents
related to the flow in the λ-g-subspace, as predicted by the three-dimensional
truncation, agree almost perfectly with those from the Einstein–Hilbert ap-
proximation. Analyzing the scheme dependence of the universal quantities one
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finds again a highly remarkable R(0)-independence − which is truly amazing
if one visualizes the huge amount of nontrivial numerical compensations and
cancellations among several dozens of R(0)-dependent terms which is necessary
to make g∗ λ∗, say, approximately independent of the shape function R(0).

On the basis of these results we believe that the NGFP occuring in the
Einstein–Hilbert truncation is very unlikely to be an artifact of this truncation
but rather may be considered the projection of an NGFP in the exact theory.
The fixed point and all its qualitative properties are stable against variations
of the cutoff and the inclusion of a further invariant in the truncation. It
is particularly remarkable that within the scheme dependence the additional
R2-term has essentially no impact on the fixed point. These are certainly
very nontrivial indications supporting the conjecture that four-dimensional
QEG indeed possesses an RG fixed point with the properties needed for its
nonperturbative renormalizability.

This view is further supported by two conceptually independent investi-
gations. In [19] a proper time renormalization group equation rather than the
flow equation of the average action has been used, and again a suitable NGFP
was found. This framework is conceptually somewhat simpler than that of the
effective average action; it amounts to an RG-improved 1-loop calculation with
an IR cutoff. Furthermore, in [29] the functional integral over the subsector of
metrics admitting two Killing vectors has been performed exactly, and again
an NGFP was found, this time in a setting and an approximation which is
very different from that of the truncated Γk-flows. As for the inclusion of mat-
ter fields, both in the average action [14–16, 20] and the symmetry reduction
approach [29], a suitable NGFP has been established for a broad class of mat-
ter systems. For a more detailed review of the asymptotic safety scenario the
reader is referred to [30].

4 Scale-Dependent Metrics
and the Resolution Function �(k)

In the following we take the existence of a suitable NGFP on the full theory
space for granted and explore some of the properties of asymptotic safety, in
particular we try to gain some understanding of what a “quantum spacetime”
is like. Unless stated otherwise we consider pure Euclidean gravity in d = 4.

The running effective average action Γk[gμν ] defines an infinite set of ef-
fective field theories, valid near the scale k which we may vary between k = 0
and k = ∞. Intuitively speaking, the solution

〈

gμν
〉

k
of the scale-dependent

field equation

δΓk
δgμν(x)

[
〈

g
〉

k
] = 0 (4.1)

can be interpreted as the metric averaged over (Euclidean) spacetime volumes
of a linear extension � which typically is of the order of 1/k. Knowing the
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scale dependence of Γk, i.e. the renormalization group trajectory k �→ Γk, we
can derive the running effective Einstein equations (4.1) for any k and, after
fixing appropriate boundary conditions and symmetry requirements, follow
their solution

〈

gμν
〉

k
from k = ∞ to k = 0.

The infinitely many equations of (4.1), one for each scale k, are valid si-
multaneously. They all refer to the same physical system, the “quantum space-
time”. They describe its effective metric structure on different length scales.
An observer using a “microscope” with a resolution ≈ k−1 will perceive the
universe to be a Riemannian manifold with metric

〈

gμν
〉

k
. At every fixed k,

〈

gμν
〉

k
is a smooth classical metric. But since the quantum spacetime is char-

acterized by the infinity of metrics {〈gμν
〉

k
|k = 0, · · · ,∞} it can acquire very

nonclassical and in particular fractal features. In fact, every proper distance
calculated from

〈

gμν
〉

k
is unavoidably scale dependent. This phenomenon is

familiar from fractal geometry, a famous example being the coast line of Eng-
land whose length depends on the size of the yardstick used to measure it [31].

Let us describe more precisely what it means to “average” over Euclidean
spacetime volumes. The quantity we can freely tune is the IR cutoff scale k,
and the “resolving power” of the microscope, henceforth denoted �, is an a
priori unknown function of k. (In flat space, � ≈ π/k.) In order to understand
the relationship between � and k we must recall some more steps from the
construction of Γk[gμν ] in [6].

The effective average action is obtained by introducing an IR cutoff into
the path-integral over all metrics, gauge fixed by means of a background gauge
fixing condition. Even without a cutoff the resulting effective action Γ [gμν ; ḡμν ]
depends on two metrics, the expectation value of the quantum field, gμν , and
the background field ḡμν . This is a standard technique, and it is well known
[32] that the functional Γ [gμν ] ≡ Γ [gμν ; ḡμν = gμν ] obtained by equating the
two metrics can be used to generate the 1PI Green’s functions of the theory.

(We emphasize, however, that the average action method is manifestly
background independent despite the temporary use of ḡμν at an intermediate
level. At no stage in the derivation of the β-functions it is necessary to assign
a concrete metric to ḡμν , such as ḡμν = ημν in standard perturbation theory,
say. The RG flow, i.e. the vector field β, on the theory space of diffeomorphism
invariant action functionals depending on gμν and ḡμν is a highly universal
object: it neither depends on any specific metric, nor on any specific action.)

The IR cutoff of the average action is implemented by first expressing the
functional integral over all metric fluctuations in terms of eigenmodes of D̄2,
the covariant Laplacian formed with the aid of the background metric ḡμν .
Then the suppression term ΔkS is introduced which damps the contribution
of all −D̄2-modes with eigenvalues smaller than k2. Coupling the dynami-
cal fields to sources and Legendre-transforming leads to the scale-dependent
functional Γk[gμν ; ḡμν ], and the action with one argument again obtains by
equating the two metrics:

Γk[gμν ] ≡ Γk[gμν ; ḡμν = gμν ] . (4.2)

It is this action which appears in the effective field equations (4.1).
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A solution to those effective field equations represents a scale-dependent
“one-point function”

〈

gμν(x)
〉

k
. Even though the metric operator is a highly

singular object, as is any quantum field operator localized at a point,
〈

gμν(x)
〉

k
is a smooth function of x in general, at most up to isolated singularities. In
fact, within the Einstein–Hilbert truncation, (4.1) has the same form as the
classical Einstein equation, and all its well-known solutions, with G and λ̄
replaced by the k-dependent Gk and λ̄k, respectively, provide examples of
such one-point functions. The smoothness of

〈

gμν(x)
〉

k
, at every fixed value

of k ∈ (0,∞), is due to the averaging over infinitely many configurations of
the microscopic (i.e., quantum) metric. This average is performed with the
path integral containing the cutoff term ΔkS. The occurrence of a smooth
one-point function is familiar from standard field theory. A well-known text
book example from quantum electrodynamics is the Uehling potential, the
radiatively corrected field of an electric point charge. In quantum gravity, in
a formalism without gauge fixing, one might encounter additional problems
due to the fact that it is impossible to specify any particular point “x” in
the quantum ensemble so that observables would always have to contain an
integration over x. In the average action approach this problem does not
arise since the renormalization group equation pertains to an explicitly gauge
fixed path integral. As a result, for every given k, the labels “x” are in a
one-to-one correspondence with the points of spacetime. It is a nontrivial
issue, however, to make sure that when one compares solutions

〈

gμν(x)
〉

k
for

different values of k the coordinates x refer to the same point always. This
can be done, for instance, by deriving a flow equation directly for the solution:
k ∂k

〈

gμν(x)
〉

k
= · · · [33]. A simple example of an equation of this kind (or

rather its solution) is the relation (5.4) below. Once we have found a family
of metrics

〈

gμν(x)
〉

k
where “x” refers to the same point for any value of k we

may perform only k-independent diffeomorphisms on this family if we want
to maintain this property. A priori we could have changed the coordinates at
each level k separately, but clearly this would destroy the scale-independent
one-to-one correspondence between points and coordinates.

In the spirit of effective field theory, and by the very construction of the
effective average action [24],

〈

gμν
〉

k
should be thought of as the metric rel-

evant in any single-scale physical process involving momenta of the order k,
in the sense that fluctuations about the average are smallest if

〈

gμν
〉

k
is used

for this particular, physically determined value of k. The concrete identifi-
cation of k depends on the physical situation or process under consideration.
A typical example of a quantity which potentially can act as an IR cutoff, well
known from deep inelastic scattering, for instance, is the (4-momentum)2, or
virtuality, of a particle.

It is natural to ask how much of the spacetime structure is revealed by
an experiment (“microscope”) with a given characteristic scale k. Because of
the identification of the two metrics in (4.2) we see that, in a sense, it is the
eigenmodes of D̄2 = D2, constructed from the argument of Γk[g], which are
cut off at k2. This last observation is essential for the following algorithm
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[23, 34] for the reconstruction of the averaging scale � from the cutoff k. The
input data is the set of metrics characterizing a quantum manifold, {〈gμν

〉

k
}.

The idea is to deduce the relation � = �(k) from the spectral properties of
the scale-dependent Laplacian Δ(k) ≡ D2(

〈

gμν
〉

k
) built with the solution of

the effective field equation. More precisely, for every fixed value of k, one
solves the eigenvalue problem of −Δ(k) and studies the properties of the
special eigenfunctions whose eigenvalue is k2, or nearest to k2 in the case of a
discrete spectrum. We shall refer to an eigenmode of −Δ(k) whose eigenvalue
is (approximately) the square of the cutoff k as a “cutoff mode” (COM) and
denote the set of all COMs by COM(k).

If we ignore the k-dependence of Δ(k) for a moment (as it would be ap-
propriate for matter theories in flat space) the COMs are, for a sharp cutoff,
precisely the last modes integrated out when lowering the cutoff, since the sup-
pression term in the path integral cuts out all modes of the metric fluctuation
with eigenvalue smaller than k2.

For a non-gauge theory in flat space the coarse graining or averaging of
fields is a well-defined procedure, based upon ordinary Fourier analysis, and
one finds that in this case the length � is essentially the wavelength of the last
modes integrated out, the COMs.

This observation motivates the following definition of � in quantum gravity.
We determine the COMs of −Δ(k), analyze how fast these eigenfunctions vary
on spacetime, and read off a typical coordinate distance Δxμ characterizing
the scale on which they vary. For an oscillatory COM, for example, Δxμ would
correspond to an oscillation period. (In general there is a certain freedom in
the precise identification of the Δxμ belonging to a specific cutoff mode. This
ambiguity can be resolved by refining the definition of Δxμ on a case-by-case
basis only.) Finally we use the metric

〈

gμν
〉

k
itself in order to convert Δxμ to

a proper length. This proper length, by definition, is �. Repeating the above
steps for all values of k, we end up with a function � = �(k). In general one
will find that � depends on the position on the manifold as well as on the
direction of Δxμ.

Applying the above algorithm on a nondynamical flat spacetime one re-
covers the expected result �(k) = π/k. In [34] a specific example of a QEG
spacetime has been constructed, the quantum S4, which is an ordinary 4-
sphere at every fixed scale, with a k-dependent radius, though. In this case,
too, the resolution function was found to be �(k) = π/k.

Thus the construction and interpretation of a QEG spacetime proceeds,
in a nutshell, as follows. We start from a fixed RG trajectory k �→ Γk, derive
its effective field equations at each k, and solve them. The resulting quantum
mechanical counterpart of a classical spacetime is equipped with the infinity
of Riemannian metrics {〈gμν

〉

k

∣

∣k = 0, · · · ,∞} where the parameter k is only
a book-keeping device a priori. It can be given a physical interpretation by
relating it to the COM length scale characterizing the averaging procedure:
One constructs the Laplacian −D2(

〈

gμν
〉

k
), diagonalizes it, looks how rapidly

its k2-eigenfunction varies, and “measures” the length of typical variations
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with the metric
〈

gμν
〉

k
itself. In the ideal case one can solve the resulting

� = �(k) for k = k(�) and reinterpret the metric
〈

gμν
〉

k
as referring to a

microscope with a known position and direction-dependent resolving power �.
The price we have to pay for the background independence is that we cannot
freely choose � directly but rather k only.

5 Microscopic Structure of the QEG Spacetimes

One of the intriguing conclusions we reached in [8, 10] was that the QEG
spacetimes are fractals and that their effective dimensionality is scale depen-
dent. It equals 4 at macroscopic distances (�� �Pl) but, near � ≈ �Pl, it gets
dynamically reduced to the value 2. For � � �Pl spacetime is, in a precise
sense [8], a 2-dimensional fractal.

In [26] the specific form of the graviton propagator on this fractal was ap-
plied in a cosmological context. It was argued that it gives rise to a Harrison–
Zeldovich spectrum of primordial geometry fluctuations, perhaps responsible
for the CMBR spectrum observed today. (In [25–27], [35]-[40] various types
of “RG improvements” were used to explore possible physical manifestations
of the scale dependence of the gravitational parameters.)

A priori there exist several plausible definitions of a fractal dimensionality
of spacetime. In our original argument [8] we used the one based upon the
anomalous dimension ηN at the NGFP. We shall review this argument in the
rest of this section. Then, in Sect. 6, we evaluate the spectral dimension for the
QEG spacetimes [41] and demonstrate that it displays the same dimensional
reduction 4 → 2 as the one based upon ηN . The spectral dimension has
also been determined in Monte Carlo simulations of causal (i.e. Lorentzian)
dynamical triangulations [42]-[45] and it will be interesting to compare the
results.

For simplicity we use the Einstein–Hilbert truncation to start with, and we
consider spacetimes with classical dimensionality d = 4. The corresponding
RG trajectories are shown in Fig. 1. For k → ∞, all of them approach the
NGFP (λ∗, g∗) so that the dimensionful quantities run according to

Gk ≈ g∗/k2 , λ̄k ≈ λ∗ k2 (5.1)

The behavior (5.1) is realized in the asymptotic scaling regime k � mPl. Near
k = mPl the trajectories cross over towards the GFP. Since we are interested
only in the limiting cases of very small and very large distances the following
caricature of an RG trajectory will be sufficient. We assume that Gk and
λ̄k behave as in (5.1) for k � mPl, and that they assume constant values
for k � mPl. The precise interpolation between the two regimes could be
obtained numerically [9] but will not be needed here.

The argument of [10] concerning the fractal nature of the QEG spacetimes
is as follows. Within the Einstein–Hilbert truncation of theory space, the ef-
fective field equations (4.1) happen to coincide with the ordinary Einstein



QEG: Towards an Asymptotically Safe Field Theory of Gravity 277

equation, but with Gk and λ̄k replacing the classical constants. Without
matter,

Rμν(
〈

g
〉

k
) = λ̄k

〈

gμν
〉

k
(5.2)

Since in the absence of dimensionful constants of integration λ̄k is the only
quantity in this equation which sets a scale, every solution to (5.2) has a
typical radius of curvature rc(k) ∝ 1/

√

λ̄k. (For instance, the S4-solution has
the radius rc =

√

3/λ̄k.) If we want to explore the spacetime structure at
a fixed length scale � we should use the action Γk[gμν ] at k ≈ π/� because
with this functional a tree-level analysis is sufficient to describe the essential
physics at this scale, including the relevant quantum effects. Hence, when we
observe the spacetime with a microscope of resolution �, we will see an average
radius of curvature given by rc(�) ≡ rc(k = π/�). Once � is smaller than the
Planck length �Pl ≡ m−1

Pl we are in the fixed point regime where λ̄k ∝ k2 so
that rc(k) ∝ 1/k, or

rc(�) ∝ � (5.3)

Thus, when we look at the structure of spacetime with a microscope of resolu-
tion �� �Pl, the average radius of curvature which we measure is proportional
to the resolution itself. If we want to probe finer details and decrease � we au-
tomatically decrease rc and hence increase the average curvature. Spacetime
seems to be more strongly curved at small distances than at larger ones. The
scale-free relation (5.3) suggests that at distances below the Planck length the
QEG spacetime is a special kind of fractal with a self-similar structure. It has
no intrinsic scale because in the fractal regime, i.e. when the RG trajectory
is still close to the NGFP, the parameters which usually set the scales of the
gravitational interaction, G and λ̄, are not yet “frozen out”. This happens
only later on, somewhere halfway between the NGFP and the GFP, at a scale
of the order of mPl. Below this scale, Gk and λ̄k stop running and, as a result,
rc(k) becomes independent of k so that rc(�) = const for � � �Pl. In this
regime

〈

gμν
〉

k
is k-independent, indicating that the macroscopic spacetime is

describable by a single smooth Riemannian manifold.
The above argument made essential use of the proportionality � ∝ 1/k.

In the fixed point regime it follows trivially from the fact that there exist no
other relevant dimensionful parameters so that 1/k is the only length scale
one can form. The algorithm for the determination of �(k) described above
yields the same answer.

It is easy to make the k-dependence of
〈

gμν
〉

k
explicit. Picking an arbi-

trary reference scale k0 we rewrite (5.2) as [λ̄k0/λ̄k]Rμν(
〈

g
〉

k
) = λ̄k0 δμν . Since

Rμν(c g) = c−1 Rμν(g) for any constant c > 0, the average metric and its
inverse scale as

〈

gμν(x)
〉

k
=[λ̄k0/λ̄k]

〈

gμν(x)
〉

k0
(5.4)

〈

gμν(x)
〉

k
=[λ̄k/λ̄k0 ]

〈

gμν(x)
〉

k0
(5.5)
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These relations are valid provided the family of solutions considered exists for
all scales between k0 and k, and λ̄k has the same sign always.

As we discussed in [8] the QEG spacetime has an effective dimensionality
which is k-dependent and hence noninteger in general. The discussion was
based upon the anomalous dimension ηN of the operator

∫ √
g R. It is defined

as ηN ≡ −k ∂k lnZNk, where ZNk ∝ 1/Gk is the wavefunction renormalization
of the metric [6]. In a sense which we shall make more precise in a moment,
the effective dimensionality of spacetime equals 4 + ηN . The RG trajectories
of the Einstein–Hilbert truncation (within its domain of validity) have ηN ≈ 0
for k → 01 and ηN ≈ −2 for k →∞, the smooth change by two units occuring
near k ≈ mPl. As a consequence, the effective dimensionality is 4 for �� �Pl

and 2 for �� �Pl.
In the exact theory, and in any truncation, the UV fixed point has an

anomalous dimension η ≡ ηN (λ∗, g∗) = −2 [8, 10]. We can use this informa-
tion in order to determine the momentum dependence of the dressed graviton
propagator for momenta p2 � m2

Pl. Expanding the Γk of (3.2) about flat
space and omitting the standard tensor structures we find the inverse prop-
agator ˜Gk(p)−1 ∝ ZN (k) p2. The conventional dressed propagator ˜G(p), the
one contained in Γ ≡ Γk=0, obtains from the exact ˜Gk by taking the limit
k → 0. For p2 > k2 � m2

Pl the actual cutoff scale is the physical momentum
p2 itself2 so that the k-evolution of ˜Gk(p) stops at the threshold k =

√

p2.
Therefore

˜G(p)−1 ∝ ZN

(

k =
√

p2
)

p2 ∝ (p2)1−
η
2 (5.6)

because ZN(k) ∝ k−η when η ≡ −∂t lnZN is (approximately) constant. In d

dimensions, and for η �= 2 − d, the Fourier transform of ˜G(p) ∝ 1/(p2)1−η/2

yields the following propagator in position space:

G(x; y) ∝ 1

|x− y|d−2+η
. (5.7)

This form of the propagator is well known from the theory of critical phe-
nomena, for instance. (In the latter case it applies to large distances.) Equa-
tion (5.7) is not valid directly at the NGFP. For d = 4 and η = −2 the dressed
propagator is ˜G(p) = 1/p4 which has the following representation in position
space:

G(x; y) = − 1
8π2

ln (μ |x− y|) . (5.8)

Here μ is an arbitrary constant with the dimension of a mass. Obviously (5.8)
has the same form as a 1/p2-propagator in 2 dimensions.
1 In the case of type IIIa trajectories [9, 39] the macroscopic k-value is still far

above kterm, i.e. in the “GR regime” described in [39].
2 See Sect. 1 of [37] for a detailed discussion of “decoupling” phenomena of this

kind.
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Slightly away from the NGFP, before other physical scales intervene, the
propagator is of the familiar type (5.7) which shows that the quantity ηN
has the standard interpretation of an anomalous dimension in the sense that
fluctuation effects modify the decay properties of G so as to correspond to a
spacetime of effective dimensionality 4 + ηN .

Thus the properties of the RG trajectories imply the following “dimen-
sional reduction”: Spacetime, probed by a “graviton” with p2 � m2

Pl is
four-dimensional, but it appears to be two-dimensional for a graviton with
p2 � m2

Pl [8].
It is interesting to note that in d classical dimensions, where the macro-

scopic spacetime is d-dimensional, the anomalous dimension at the fixed point
is η = 2− d. Therefore, for any d, the dimensionality of the fractal as implied
by ηN is d + η = 2 [8, 10].

6 The Spectral Dimension

Next we turn to the spectral dimension Ds of the QEG spacetimes. This
particular definition of a fractal dimension is borrowed from the theory of dif-
fusion processes on fractals [46] and is easily adapted to the quantum gravity
context [47, 45]. In particular it has been used in the Monte Carlo studies
mentioned above.

Let us study the diffusion of a scalar test particle on a d-dimensional
classical Euclidean manifold with a fixed smooth metric gμν(x). The corre-
sponding heat-kernel Kg(x, x′;T ) giving the probability for the particle to
diffuse from x′ to x during the fictitious diffusion time T satisfies the heat
equation ∂TKg(x, x′;T ) = ΔgKg(x, x′;T ) where Δg ≡ D2 denotes the scalar
Laplacian: Δgφ ≡ g−1/2 ∂μ(g1/2 gμν ∂νφ). The heat-kernel is a matrix element
of the operator exp(T Δg). In the random walk picture its trace per unit vol-
ume, Pg(T ) ≡ V −1

∫

ddx
√

g(x)Kg(x, x;T ) ≡ V −1 Tr exp(T Δg), has the
interpretation of an average return probability. (Here V ≡ ∫

ddx
√
g denotes

the total volume.) It is well known that Pg possesses an asymptotic expansion
(for T → 0) of the form Pg(T ) = (4πT )−d/2

∑∞
n=0 An T n. For an infinite flat

space, for instance, it reads Pg(T ) = (4πT )−d/2 for all T . Thus, knowing the
function Pg, one can recover the dimensionality of the target manifold as the
T -independent logarithmic derivative d = −2 d lnPg(T )/d lnT . This formula
can also be used for curved spaces and spaces with finite volume V provided
T is not taken too large [45].

In QEG where we functionally integrate over all metrics it is natural to
replace Pg(T ) by its expectation value. Symbolically, P (T ) ≡ 〈

Pγ(T )
〉

where
γμν denotes the microscopic metric (integration variable) and the expectation
value is with respect to the ordinary path integral (without IR cutoff) con-
taining the fixed point action.Given P (T ), we define the spectral dimension
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of the quantum spacetime in analogy with the classical formula:

Ds = −2
d lnP (T )
d lnT

(6.1)

Let us now evaluate (6.1) using the average action method. The fictitious
diffusion process takes place on a “manifold” which, at every fixed scale, is
described by a smooth Riemannian metric

〈

gμν
〉

k
. While the situation appears

to be classical at fixed k, nonclassical features emerge in the regime with
nontrivial RG running since there the metric depends on the scale at which
the spacetime structure is probed.

The nonclassical features are encoded in the properties of the diffusion op-
erator. Denoting the covariant Laplacians corresponding to the metrics

〈

gμν
〉

k

and
〈

gμν
〉

k0
by Δ(k) and Δ(k0), respectively, (5.4) and (5.5) imply that they

are related by

Δ(k) = [λ̄k/λ̄k0 ]Δ(k0) (6.2)

When k, k0 � mPl we have, for example,

Δ(k) = (k/k0)2 Δ(k0) (6.3)

Recalling that the average action Γk defines an effective field theory at
the scale k we have that

〈O(γμν)
〉 ≈ O(

〈

gμν
〉

k
) if the operator O involves

typical covariant momenta of the order k and
〈

gμν
〉

k
solves (4.1). In the fol-

lowing we exploit this relationship for the RHS of the diffusion equation,
O = Δγ Kγ(x, x′;T ). It is crucial here to correctly identify the relevant
scale k.

If the diffusion process involves only a small interval of scales near k over
which λ̄k does not change much the corresponding heat equation must contain
the Δ(k) for this specific, fixed value of k:

∂TK(x, x′;T ) = Δ(k)K(x, x′;T ) (6.4)

Denoting the eigenvalues of −Δ(k0) by En and the corresponding eigenfunc-
tions by φn, this equation is solved by

K(x, x′;T ) =
∑

n

φn(x)φn(x′) exp
(

− F (k2) En T

)

(6.5)

Here we introduced the convenient notation F (k2) ≡ λ̄k/λ̄k0 . Knowing this
propagation kernel we can time-evolve any initial probability distribution
p(x; 0) according to p(x;T ) =

∫

d4x′ √g0(x′)K(x, x′;T ) p(x′; 0) with g0 the
determinant of

〈

gμν
〉

k0
. If the initial distribution has an eigenfunction expan-

sion of the form p(x; 0) =
∑

n Cn φn(x) we obtain

p(x;T ) =
∑

n

Cn φn(x) exp
(

− F (k2) En T

)

(6.6)
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If the Cn’s are significantly different from zero only for a single eigenvalue
EN , we are dealing with a single-scale problem. In the usual spirit of effective
field theories we would then identify k2 = EN as the relevant scale at which
the running couplings are to be evaluated. However, in general the Cn’s are
different from zero over a wide range of eigenvalues. In this case we face a
multiscale problem where different modes φn probe the spacetime on different
length scales.

If Δ(k0) corresponds to flat space, say, the eigenfunctions φn ≡ φp are
plane waves with momentum pμ, and they resolve structures on a length
scale � of order π/|p|. Hence, in terms of the eigenvalue En ≡ Ep = p2 the
resolution is � ≈ π/

√En. This suggests that when the manifold is probed by
a mode with eigenvalue En it “sees” the metric

〈

gμν
〉

k
for the scale k =

√En.
Actually the identification k =

√En is correct also for curved space since, in
the construction of Γk, the parameter k is introduced precisely as a cutoff in
the spectrum of the covariant Laplacian.

Therefore we conclude that under the spectral sum of (6.6) we must use
the scale k2 = En which depends explicitly on the resolving power of the
corresponding mode. Likewise, in (6.5), F (k2) is to be interpreted as F (En).
Thus we obtain the traced propagation kernel

P (T ) = V −1
∑

n

exp
[

− F (En) En T

]

= V −1 Tr exp
[

F
(

−Δ(k0)
)

Δ(k0)T
]

(6.7)

It is convenient to choose k0 as a macroscopic scale in a regime where there
are no strong RG effects any more.

Furthermore, let us assume for a moment that at k0 the cosmological
constant is tiny, λ̄k0 ≈ 0, so that

〈

gμν
〉

k0
is an approximately flat metric. In

this case the trace in (6.7) is easily evaluated in a plane wave basis:

P (T ) =
∫

d4p

(2π)4
exp

[−p2 F (p2)T
]

(6.8)

The T -dependence of (6.8) determines the fractal dimensionality of spacetime
via (6.1). In the limits T → ∞ and T → 0 where the random walks probe
very large and small distances, respectively, we obtain the dimensionalities
corresponding to the largest and smallest length scales possible. The limits
T →∞ and T → 0 of P (T ) are determined by the behavior of F (p2) ≡ λ̄(k =
√

p2)/λ̄k0 for p2 → 0 and p2 →∞, respectively.
For an RG trajectory where the renormalization effects stop below some

threshold we have F (p2 → 0) = 1. In this case (6.8) yields P (T ) ∝ 1/T 2, and
we conclude that the macroscopic spectral dimension is Ds = 4.

In the fixed point regime we have λ̄k ∝ k2, and therefore F (p2) ∝ p2. As a
result, the exponent in (6.8) is proportional to p4 now. This implies the T →
0−behavior P (T ) ∝ 1/T . It corresponds to the spectral dimension Ds = 2.
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This result holds for all RG trajectories since only the fixed-point proper-
ties were used. In particular it is independent of λ̄k0 on macroscopic scales.
Indeed, the above assumption that

〈

gμν
〉

k0
is flat was not necessary for ob-

taining Ds = 2. This follows from the fact that even for a curved metric the
spectral sum (6.7) can be represented by an Euler–MacLaurin series which
always implies (6.8) as the leading term for T → 0.

Thus we may conclude that on very large and very small length scales the
spectral dimensions of the QEG spacetimes are

Ds(T →∞) = 4
Ds(T → 0) = 2 (6.9)

The dimensionality of the fractal at sub-Planckian distances is found to
be 2 again, as in the first argument based upon ηN . Remarkably, the equality
of 4 + η and Ds is a special feature of 4 classical dimensions. Generalizing for
d classical dimensions, the fixed point running of Newton’s constant becomes
Gk ∝ k2−d with a dimension-dependent exponent, while λ̄k ∝ k2 continues to
have a quadratic k-dependence. As a result, the ˜G(k) of (5.6) is proportional
to 1/pd in general so that, for any d, the two-dimensional looking graviton
propagator (5.8) is obtained. (This is equivalent to saying that η = 2 − d, or
d + η = 2, for arbitrary d.)

On the other hand, the impact of the RG effects on the diffusion pro-
cess is to replace the operator Δ by Δ2, for any d, since the cosmological
constant always runs quadratically. Hence, in the fixed point regime, (6.8)
becomes P (T ) ∝ ∫

ddp exp
[−p4 T

] ∝ T−d/4. This T -dependence implies the
spectral dimension

Ds(d) = d/2 (6.10)

This value coincides with d + η if, and only if, d = 4. It is an intriguing spec-
ulation that this could have something to do with the observed macroscopic
dimensionality of spacetime.

For the sake of clarity and to be as explicit as possible we described the
computation of Ds within the Einstein–Hilbert truncation. However, it is easy
to see [41] that the only nontrivial ingredient of this computation, the scaling
behavior Δ(k) ∝ k2, is in fact an exact consequence of asymptotic safety. If the
fixed point exists, simple dimensional analysis implies Δ(k) ∝ k2 at the un-
truncated level, and this in turn gives rise to (6.10). If QEG is asymptotically
safe, Ds = 2 at sub-Planckian distances is an exact nonperturbative result for
all of its spacetimes. To be as explicit as possible, we described the arguments
leading to Ds = 2 in the context of the average action. They are, however,
to a large extent independent of the concrete formalism used; see [30] for
further details.

It is interesting to compare the result (6.9) to the spectral dimensions
which were recently obtained by Monte Carlo simulations of the causal
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dynamical triangulation model of quantum gravity [45]:

Ds(T →∞) = 4.02± 0.1
Ds(T → 0) = 1.80± 0.25 (6.11)

These figures, too, suggest that the long-distance and short-distance spectral
dimension should be 4 and 2, respectively. The dimensional reduction from
4 to 2 dimensions is a highly nontrivial dynamical phenomenon which seems
to occur in both QEG and the discrete triangulation model. We find it quite
remarkable that the discrete and the continuum approach lead to essentially
identical conclusions in this respect. This could be a first hint indicating that
the discrete model and QEG in the average action formulation describe the
same physics.

7 Concluding Remarks

In the light of the RG properties of the effective average action it is indeed
rather likely that four-dimensional Quantum Einstein Gravity can be defined
(“renormalized”) nonperturbatively along the lines of asymptotic safety. It
seems quite possible to construct a quantum field theory of the spacetime
metric which is not only an effective one, but rather a fundamental one and
which is mathematically consistent and predictive on the smallest possible
length scales even. If so, it is not necessary to leave the realm of quantum
field theory in order to construct a satisfactory quantum gravity. This is at
variance with the basic credo of string theory, for instance, which is also
claimed to provide a consistent gravity theory. Here a very high price has to
be paid for curing the problems of perturbative gravity, however: one has to
live with infinitely many (unobserved) matter fields.

The average action approach has led to specific predictions for the space-
time structure in nonperturbative, asymptotically safe gravity. The general
picture of the QEG spacetimes which emerged is as follows. At sub-Planckian
distances spacetime is a fractal of dimensionality Ds = 4 + η = 2. It can be
thought of as a self-similar hierarchy of superimposed Riemannian manifolds
of any curvature. As one considers larger length scales where the RG running
of the gravitational parameters comes to a halt, the “ripples” in the spacetime
gradually disappear and the structure of a classical four-dimensional manifold
is recovered.
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1 Introduction

String theory is not, in contrast to general relativity and quantum field the-
ory, a theory in the strict sense. There is, e.g., no axiomatic formulation and
there is no set of defining equations of motion. Instead there is a set of rules
which have been developed over the years. They have led to rather spectacu-
lar results and have passed all conceivable consistency checks. As has become
clear, string theory is more than a theory of strings. This is most apparent
through the rôle played by D-branes. They are additional extended dynamical
objects whose existence within the theory can be inferred from a variety of
arguments. D-branes and other types of p-branes (p-dimensional membranes)
are essential for the web of non-perturbative dualities between the known
perturbative string theories. Since it is not clear whether strings will remain
the fundamental degrees of freedom in the final form of the theory, the term
M-theory is frequently used instead of non-perturbative string theory.

However, both notions are programmatic, as the underlying dynamical
principle and, closely related to this, the symmetries of string theory have not
yet been found. It would thus be more appropriate to speak about a ‘theory
under construction’; nevertheless, following common usage, we will always
speak of string theory or M-theory, the later being understood as the working
title for the non-perturbative completion of string theory. At the moment it
is not possible to present a well-rounded-off view of string theory. All this
non-technical overview is able to accomplish is to recall some of the successes
of the theory, mention some of the current activities and some of the open
challenges.
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2 Beyond the Standard Model

String theory is a proposal for a unifying framework of high energy physics.
At currently achievable accelerator energies of O(1TeV) or, equivalently, at
distance scales > 10−19 m, the standard model (SM) of Particle Physics
(amended with appropriate neutrino masses) provides a successful and pre-
dictive theoretical description. It is based on the mathematical framework of
a local quantum gauge field theory with gauge group SU(3)× SU(2)× U(1).
Nevertheless it is believed that the SM is merely a low-energy effective descrip-
tion of a more fundamental theory. There are several reasons for this belief.

(1) The standard model has many free parameters (coupling constants, mix-
ing angles, etc.) which have to be fixed by experiments. They could, a
priori, take any value (within a given range such that the effective de-
scription is still valid and that perturbative calculations, on which the
comparisons with experiment are based, are justified). In addition there
is no explanation of the particle spectrum and its symmetries; they are also
experimental input, the only theoretical restriction being the requirement
of cancellation of gauge anomalies.

(2) The standard model does not include the gravitational interactions. While
this can be safely ignored at laboratory energies, there is nevertheless an
energy range where gravity competes with the gauge interactions. This is
a consequence of the fact that the gravitational coupling constant GN has
dimension of (length)2. One should therefore consider the dimensionless
quantity GNE2, where E is the energy scale of the experiment. With
GN ∼ M−2

Pl this means that the gravitational interaction becomes large
at energies comparable with the Planck scale. It is in this regime that a
quantum theory of gravity is needed, provided that we assume that gravity
is a fundamental interaction and not an effective one (which would not be
quantized).

(3) In the standard model space-time is non-dynamical and smooth. The num-
ber of dimensions and the geometry (four-dimensional Minkowski space-
time) are fixed and the back-reaction on the geometry is neglected. How-
ever, at very high energies this is no longer appropriate; for instance, if a
mass m is squeezed into a volume of a size smaller than its Schwarzschild
radius rs ∼ l2pm, then we expect that it will collapse into a black hole.

These points make it highly desirable to have a unified quantum theory of all
interactions. Here ‘unification’ can be understood in two ways. The broader,
conceptual meaning of unification is to have a consistent framework which
includes both quantum theory and gravity. The predominant belief among
particle physicists is that this mainly requires to ‘quantize gravity’, i.e., to re-
formulate Einstein’s theory of gravity as a quantum theory. However, one
should bear in mind that ‘quantization’ is only an, albeit successful, for-
mal device for formulating quantum theories. It is quite plausible that the
introduction of a dynamical space-time requires significant modifications of
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quantum theory as well. We will briefly comment on the stringy perspective
on this below.

The ‘conceptual’ type of unification is not only aesthetically appealing,
but also mandatory if we want to address the physics of the early universe
and of black holes in a consistent way. The second, more narrow, meaning of
unification is that, qualitatively speaking, all forces in nature are manifesta-
tions of one single force (as, e.g., in the Kaluza–Klein scenario). The popular
though somewhat over-ambitious terms ‘theory of everything’ or ‘Weltformel’
have been coined to illustrate this idea. More concretely, one can put for-
ward the working hypothesis that there is a symmetry principle, such that
(i) the coupling constants of all interactions can be expressed in terms of one
fundamental coupling constant, and such that (ii) all particles organize into
irreducible representations. While this idea is aesthetically pleasing, it is by
no means a necessary requirement for having a consistent fundamental theory
of nature. However, the idea of unification (in the narrow sense) has great
heuristic value, as it has stimulated the formulation of interesting theories.

While the unification of the non-gravitational interactions within the
framework of quantum gauge theories does not meet fundamental problems,
this changes once one attempts to include gravity. One way to see this is due
to the perturbative non-renormalizability of the gravitational interaction.1

In this context, the main differences between the gravitational and the
renormalizable Yang–Mills gauge interactions are (1) the graviton has spin
two while Yang–Mills gauge bosons have spin one; (2) the gravitational cou-
pling constant has negative mass-dimension while the gauge coupling con-
stants are dimensionless. Difference (2) renders the theory of gravity, based
on the Einstein-Hilbert action, perturbatively non-renormalizable: the UV in-
finities in Feynman diagrams cannot be absorbed by a finite number of local
counter-terms. The cure for the Fermi theory of weak interactions, that is
pulling the four-fermion interaction apart by inserting a propagator line of
(massive) gauge bosons, does not work for the theory of gravity with its in-
finity of interaction vertices. However, if one expands the individual lines of
a Feynman diagram into tubes or strips, thus replacing the world-lines by
world-sheets of closed or open strings, one solves, in one go, the problem with
UV infinities and replaces the infinitely many interaction vertices by a finite
number of basic three-point interactions (cf. Fig. 1).

In addition, all elementary particles, gauge fields and matter fields, cor-
respond to vibration modes of the string, which is the only fundamental
object (in contrast to a quantum field for each particle species as, e.g., in
grand unification models). Since every consistent quantum theory of strings
necessarily contains a massless spin two particle (which has the kinematical
and dynamical properties of a graviton), it automatically includes gravity.
Therefore string theory is a unified theory in both meanings of the word.

1 We will not discuss conceptual problems but refer instead to the contributions on
quantum gravity in this book.
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Fig. 1. ‘Thickening’ a field theory interaction vertex

While unification in the narrow sense is manifest in the formalism, the con-
ceptual unification of quantum theory and gravity has not yet been achieved
in a satisfactory way. The reason for this is that the formalism of ‘perturbative
string theory’, to be reviewed in Sects. 2 and 3, only gives a set of rules for
computing on-shell scattering amplitudes in an on-shell background. While
the UV finiteness of string amplitudes, which has been made highly plausible
(though not been proved rigorously), is clearly relevant for the conceptual uni-
fication, it mainly takes care of a technical aspect. Given that the amplitudes
are indeed finite, string theory provides only a perturbative theory of quan-
tum gravity. Note, however, that this allows to do more than just to compute
graviton scattering in a fixed background. It also allows to compute an effec-
tive action, which encodes quantum corrections to the Einstein–Hilbert term.
This in turn has implications for black hole physics, which will be the subject
of Sect. 8. At this point we just emphasize that conceptual issues of quantum
gravity, such as black hole entropy, have been addressed successfully in string
theory. This said, it must also be stressed that the range of conceptual points
which can be addressed today is quite limited. The main reason is that as a
starting point one always has to specify a reference background space-time.
We will come back to this when discussing open questions in Sect. 10.

Next, let us briefly come back to the question whether the concep-
tual unification of quantum theory and gravity mainly requires to ‘quantize
gravity’, or whether both quantum theory and gravity need to be modified in
a more drastic way. In perturbative string theory quantization is applied in
the same pragmatic spirit as in theoretical particle physics. Actually, the ap-
proach is at first glance a bit more naive, as one quantizes the relativistic string
and thus does quantum mechanics rather than quantum field theory. The fact
that this procedure results in a consistent perturbative theory of quantum
gravity is a surprising discovery, and the deeper reason behind this remains to
be understood. Heuristically, the improved UV behaviour can be understood
in terms of the ‘thickening’ of propagators and vertices, which we mentioned
above. As a consequence, classical physics is modified in two ways, not only by
quantum corrections, but also by stringy corrections related to the finite size of
strings. As we will see later, the string length replaces the Planck length as the
fundamental scale (at least in perturbative string theory), while there are also
transformations (‘dualities’) in the theory, which mutually exchange quantum
corrections and stringy corrections. While the deeper implications of these ob-
servations remain to be explored, it indicates that the full theory does more
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than just ‘quantize gravity’. The relation between string theory and quantum
field theory is more complicated than suggested by the naive picture of ‘thick-
ening Feynman graphs’. While programmatically string theory intends to su-
persede quantum field theory, in its current state it is deeply entangled with
it. The first point which makes this obvious is the rôle of two-dimensional con-
formal field theories, which we will elaborate on in Sects. 3 and 4. While string
scattering amplitudes are finite, the two-dimensional field theories used in the
Polyakov approach are just renormalizable. Therefore the concept of renor-
malization still plays a rôle. The second point, to be discussed in Sect. 7, is the
AdS/CFT correspondence, which claims that string theory in certain back-
grounds is equivalent to specific quantum field theories. Here, and in related
proposals such as the so-called ‘M(atrix) theory’, one even contemplates to de-
fine string theory in terms of quantum field theory. Let us further note a trend
shared by string theory and quantum field theory, namely the importance of
effective field theories. Here again renormalization (understood in a Wilsonian
spirit) plays an important rôle. Of course, the concept of string effective field
theories is by itself consistent with the idea that string theory supersedes quan-
tum field theory. However, the two previous examples show that in its present
state string theory has a more complicated relationship with quantum field
theory. The only systematic approach to go beyond local quantum field theory
is string field theory, which aims to be a full-fledged quantum field theory of ex-
tended objects. Unfortunately, string field theory has proved to be complicated
that progress was very slow. Moreover, it is not clear how the non-perturbative
dualities, to be discussed in Sect. 6, which nowadays hold a central position
in our understanding of string theory, fit together with string field theory.

The optimists hope, of course, that all the exciting observations made
during the last years will ultimately condense into a new principle, which su-
persedes and conceptually unifies quantum field theory and gravity. But so far
only some clues have been found, while the ‘big picture’ is still far from clear.

3 The Free String

The dynamics of the bosonic string in d-dimensional Minkowski space-time is
governed by the Nambu–Goto action

SNG =
1

2πα′

∫

Σ

dσdτ
√

| detG(X)|.

The world-sheet Σ which is swept out by the string is parametrized by
σα = (σ, τ). The integral is the area of Σ measured with the induced
metric Gαβ = ∂αX

μ∂βX
νημν . Xμ(σ, τ) : Σ ↪→M is the embedding of Σ into

the d-dimensional space-time with Minkowski-metric ημν , μ, ν = 0, . . . , d− 1.
T = 1

2πα′ is the string tension. ls =
√
α′ is the string scale, a length scale char-

acteristic for string theory. It replaces the Planck length lp as the fundamental
length scale.
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(a) (b)

t

Fig. 2. World-sheet of a free (a) open and (b) closed string

SNG is the direct generalization of the action of a point-like (i.e. zero-
dimensional) relativistic particle to one-dimensional strings. The world-sheet
of a freely propagating open and closed string has the topology of a strip and
cylinder, respectively (Fig. 2). For the latter, Xμ(σ, τ) is periodic (in σ) on
the cylinder.

For the open string one can impose either Dirichlet (D) or Neumann (N)
boundary conditions for each of the d fields Xμ at each of the two ends of
the string. The physical meaning of Neumann boundary conditions is that
space-time momentum does not flow off the ends of the string. With Dirichlet
boundary conditions the position of the end of the string is fixed while space-
time momentum flows off. d-dimensional Poincaré invariance demands that
the total space-time momentum is conserved. This means that momentum
must be absorbed by other dynamical objects. These objects, on which open
strings end, are called Dirichlet branes, or D-branes, for short (cf. Fig. 3). If
p of the spatial components of Xμ at one end of the string have Neumann
boundary conditions and the remaining d− p− 1 components have Dirichlet
boundary conditions, this string ends on a Dp-brane. A D0-brane is also called
D-particle and a D1-brane is called D-string. Fundamental strings (F-strings)
and D-string are quite different objects. One difference is that an open F-string
must end on a D-brane (but not vice versa). Other differences will be discussed
below.

Propagation of the particles which correspond to the excitations of the
open string is restricted to the world-volume of the D-brane while excitations
of the closed string propagate in the full d-dimensional space-time.

.
. .

.

Fig. 3. Open strings end on D-branes; closed strings explore the d-dimensional
space-time
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Quantization of string theory simplifies if one uses the Polyakov action SP

which is classically equivalent to the Nambu–Goto action:

SP = − 1
4πα′

∫

Σ

dσdτ
√

| deth|hαβ∂αXμ∂βX
νημν .

SP is the action of d scalar fields Xμ(σ, τ) which are coupled to two-
dimensional gravity with metric hαβ(σ, τ). SP is invariant under (i) global
space-time Poincaré transformations Xμ → aμνX

ν + bμ, aμρa
ν
σημν = ηρσ ;

(ii) local reparametrizations of the world-sheet σα → σ̃α(σ, τ); and (iii) under
local Weyl-rescalings of the metric hαβ → Ω2(σ, τ)hαβ . Local Weyl invariance
implies tracelessness of the energy–momentum tensor Tαβ = − 4π√

| deth|
δ

δhαβ Sp

of the world-sheet field theory, i.e. hαβTαβ = 0. Reparametrization invariance
can be used to go to conformal gauge2 where hαβ = e2ϕ(σ,τ)ηαβ . In the clas-
sical theory the Weyl degree of freedom ϕ decouples. Violation of the local
Weyl invariance in the quantized theory is signalled by a conformal anomaly.
It is measured by the central charge of the Virasoro algebra, the algebra of
constraints (Tαβ = 0) in the quantized theory.

In the (1,1) supersymmetric version of the Polyakov action, every bosonic
field Xμ and its two Majorana–Weyl superpartners ψμ± of positive and negative
chirality are coupled to two-dimensional world-sheet supergravity (hαβ , χ±

α ).
In the classical theory, in addition to the metric degrees of freedom also those
of the two world-sheet gravitini χ±

α are unphysical. This is a consequence of
two-dimensional local world-sheet supersymmetry.

The fermions ψμ± on the world-sheet of the closed string can be periodic
(Ramond) or anti-periodic (Neveu–Schwarz), where the periodicity condition
can be chosen independently for each chirality. This leads to four different sec-
tors of the closed string theory.3 Excitations in the (NS,NS) and the (R,R) sec-
tors are space-time bosons while excitations in the two mixed sectors, (R,NS)
and (NS,R), are space-time fermions. For the open string the boundary con-
ditions couple the two chiralities to each other. This leads to two sectors: the
NS sector with space-time bosons and the R sector with space-time fermions.

Quantization of string theory in Minkowski space-time is only possible in
the critical dimension dcrit, unless one is willing to accept that the quantum
theory of strings contains an additional degree of freedom, the Liouville mode.

2 Going to conformal gauge does not fix the reparametrization invariance com-
pletely. The remaining transformations are (in Euclidean signature on Σ) con-
formal transformations and the two-dimensional field theory on Σ in conformal
gauge is a so-called ‘conformal field theory’.

3 Classically, one could define different theories by taking any subset of the possible
boundary definitions. However, the quantum theory includes multiply connected
world-sheets, and the theory must be invariant under the so-called ‘modular trans-
formations’, to be discussed below. This in turn implies that all combinations of
boundary conditions have to be included, and thus each type of boundary condi-
tion defines a sector of the quantum theory.
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The status of Liouville string theory, also known as non-critical string theory,
is not completely understood. Throughout this chapter we will fix the number
of space-time dimensions to be dcrit. The critical dimension is dcrit = 26 for the
bosonic string and dcrit = 10 for the fermionic string.4 One obtains a positive-
definite Hilbert space (no-ghost-theorem) and space-time Poincaré invariance
as well as (super)Weyl invariance on the world-sheet are anomaly free. In the
covariant BRST quantization the gauge fixing of the local symmetries leads
to ghost fields, the reparametrization ghosts (b, c), and their superpartners
(β, γ). In the critical dimension their contribution to the conformal anomaly
is compensated by Xμ and ψμ.

The resulting spectrum of the theory contains a finite number of mass-
less and infinitely many massive excitations with mass2 = n

2α′ with n ∈ N.
Among the states there are also tachyons with negative mass2. They imply
an instability of the vacuum. This is unavoidable in the bosonic string. How-
ever, the spectrum of the fermionic string must be truncated by an additional
projection, the Gliozzi–Scherk–Olive (GSO) projection. This projection can
be chosen such that the tachyon is projected out and the remaining spectrum
is space-time supersymmetric. The GSO projection is necessary and can be
understood as a consistency condition (modular invariance, locality of the
CFT operator products) which must be imposed on the quantum mechanical
scattering amplitudes, to be discussed in the next section. In a theory with
only closed strings the spectrum has N = 2 space-time supersymmetry. Two
possible, inequivalent GSO projections lead to the non-chiral type IIA and to
the chiral type IIB theory. Their massless spectra are those of ten-dimensional
type IIA and type IIB supergravity, respectively.

The spectrum of type I theory with both open and closed strings is N = 1
supersymmetric. Its massless spectrum is that of supersymmetric Yang–Mills
theory, coupled to supergravity. The degrees of freedom of the Yang–Mills
theory are excitations of the open string. The two ends of the open string
carry charges in the fundamental representation of the gauge group (Chan–
Paton factors) such that the open string has the quantum numbers of a gauge
boson. The supergravity degrees of freedom are, as in the type II theories, the
massless excitations of the closed string. Consistency requires the gauge group
to be SO(32). Only in this case gauge and gravitational anomalies vanish.

Type I and type II theories are also called superstring theories. In addi-
tion to the type I theory, there are two further string theories with N = 1
space-time supersymmetry. These are the heterotic E8 ×E8 and SO(32) the-
ories. These theories have, like the type II theories, only closed strings. In
contrast to the local (1,1) world-sheet supersymmetry of the superstring,
4 Strictly speaking, one does not need to fix the number of space-time dimensions,

but the number of degrees of freedom, as measured by the central charge of the
world-sheet conformal field theory, which must be c = 26 and c = 10 in order to
cancel the contribution from the reparametrization ghosts. The surplus degrees
of freedom need not have the interpretation of string coordinates along extra
dimensions.
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heterotic theories have local (1,0) supersymmetry. The superpartner of Xμ is a
single Majorana–Weyl fermion ψμ+. Absence of gravitational anomalies on the
world-sheet requires, in the fermionic formulation of the theory, 32 additional
Majorana–Weyl fermions λa−, a = 1, . . . , 32. In the bosonic formulation these
32 fermions are replaced by 16 periodic chiral scalars ΦI(τ +σ), I = 1, . . . , 16
which are the coordinates of a 16-dimensional torus. Modular invariance re-
stricts the allowed tori to those which are generated by a 16-dimensional
self-dual even lattice Λ via T 16 = R

16/Λ. There are precisely two such lattices
which lead to the two allowed gauge groups E8 ×E8 and SO(32). The mass-
less spectra of the two heterotic theories are again those of supersymmetric
Yang–Mills theory, coupled to supergravity, now with gauge group E8 × E8

or SO(32).

4 The Interacting String

The discussion in Sect. 3 was based on the free string theory. Interactions
are introduced through the inclusion of topologically non-trivial world-sheets.
Figure 4 shows the decay of a closed string into two closed strings, while Fig. 5
shows the joining of two open strings into a closed string.

The strength of the interaction is controlled by the value of the dimension-
less string coupling constant g, which is dynamically determined through the
background value (vacuum expectation value) Φ0 of the dilaton Φ, g = eΦ0 .
The dilaton, as the graviton, is part of the massless spectrum of every string
theory. Different values of g do not correspond to different theories but they
parametrize ground states5 of a given theory. The coupling constants of the
different string theories are, however, a priori independent.

In string theory, the quantum field theoretical computation of scattering
amplitudes by summation over Feynman diagrams is replaced by the summa-
tion over world-sheets of different topologies (cf. Fig. 6). Which topologies are

ι

Fig. 4. Decay of a closed string into two closed strings

5 By a (perturbative) string ground state (‘string vacuum’) we mean a conformal
field theory with the correct properties, i.e. the correct central charge, modular
invariant partition function, etc. A geometric realization can be provided by spe-
cific background configurations of the massless fields. In this section we choose
Gμν(X) = ημν , Φ = Φ0 with all others set to zero. More general backgrounds will
be mentioned in later sections.
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(a) (b)

t

Fig. 5. Two open strings join to a closed string (a) in a space-time diagram and
(b) in a world-sheet diagram

allowed depends on the string theory. In particular, in type I both orientable
and non-orientable world-sheets must be summed over while the world-sheets
of the four other theories must be orientable.

Scattering amplitudes A can be computed in perturbation theory. A is
expanded in a power series in the string coupling g

A =
∑

n

gnA(n)

where each term A(n) is computed separately. The validity of perturbation
theory requires g � 1. The power of g with which a given world-sheet con-
tributes is the negative of its Euler number, i.e. it is determined by its topology.
The scattering amplitudes A(n) of physical states are correlation functions of
BRST-invariant vertex operators of the quantum field theory on Σ as specified
by the Polyakov action. In the path-integral formulation one has to sum over
all metrics hαβ on Σ and over all embeddings Xμ of Σ in space-time M . The
computation of scattering amplitudes is most easily done with the methods of
conformal field theory. Using the local symmetries on Σ one goes to (super)
conformal gauge and the infinite dimensional integration over hαβ (χ±

α ) is re-
duced to the finite dimensional integration over the (super) moduli of Σ and
the integration over the Faddeev–Popov ghosts. For closed strings, requiring
invariance of the amplitudes under those reparametrizations which are not
continuously connected to the identity transformation (modular invariance)
restricts the range of integration of the modular parameters to a fundamental
region. Requiring modular invariance for the one-loop amplitudes guarantees

Fig. 6. One-loop quantum correction to the propagation of a closed string
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the anomaly freedom of the space-time spectrum. It also is equivalent to im-
posing the GSO projection on the spectrum. For open strings one has to
impose, in addition, a tadpole cancellation condition for the (R,R)-fields.

For external momenta which are small compared to the characteristic scale
l−1
s = 1/

√
α′, the scattering amplitudes coincide with those of an effective field

theory. Expanding the amplitudes in powers of α′ corresponds to an expansion
in powers of derivatives in the effective field theory. In leading order the low-
energy effective action of each of the five string theories coincides with the
action of the appropriate classical supergravity theory. The relations between
the coupling constants of supergravity (the ten-dimensional Newton’s constant
G

(10)
N and the ten-dimensional Yang–Mills coupling gYM) and g and ls are

G
(10)
N ∼ g2l8s , g

2
YM ∼ g2l6s (heterotic), and g2

YM ∼ gl6s (type I). (Computable)
corrections in α′ result, e.g., in a modification of the Einstein–Hilbert action
by terms which contain higher powers of the Riemann tensor.

The finite extent of the string becomes relevant for external momenta
O(1/

√
α′) where deviations from quantum field theory become noticeable. For

instance, in contrast to quantum field theory, string scattering amplitudes are
UV finite. Heuristically this can be understood as follows: the point-like inter-
action vertices of QFT are now smeared. Perturbative finiteness of string the-
ory6 is a consequence of modular invariance which restricts the analogue of the
Schwinger proper time-integral to a so-called ‘fundamental region’. (Modular
invariance is a property of string theory and requires, as a necessary condition,
the excistence of an infinite number of excitations.) Within the framework of
string theory one can compute perturbative corrections to the gravitational in-
teraction. It is in this sense that string theory (in its supersymmetric version)
is an UV finite and unitary perturbative quantum theory of gravity.

5 Compactification

So far the discussion was restricted to string theories in a given dcrit-
dimensional Minkowski space-time with metric ημν . However, it is possible
to formulate string theory in topologically and metrically non-trivial space-
times where, e.g., only d dimensions are infinitely extended and the remaining
dint = dcrit − d are curled up and compact. One possible realization of such a
compactification starts with a direct product Ansatz Md ×K int for the ten-
dimensional space-time. Here Md is d-dimensional Minkowski space and K int

6 A complete all-order proof of perturbative finiteness has not been worked out yet.
While there are technical difficulties related to gauge fixing of the supermoduli at
higher loops, there is no apparent obstruction to extending the existing finiteness
results to all loops. (These difficulties seem to be absent in Berkovits’ covari-
ant and manifestly space-time supersymmetric quantization of the superstring.)
This is different from the situation in maximally extended supergravity, where
counterterms are possible, and, hence, to be expected, at higher loop level.
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a dint-dimensional compact manifold. In the Polyakov action this corresponds
to replacing ημν by the metric gμν(X) of the product space. This leads to
a two-dimensional non-linear σ-model with target space Md ×K int. Consis-
tency of the compactification requires a conformally invariant σ-model and
thus implies strong restrictions on K int. The resulting d-dimensional theory
depends on the geometry and topology of the compact manifold. For instance
d-dimensional supersymmetric theories require that the manifold K10−d ad-
mits Killing spinors.

The simplest consistent compactification of a closed string is on a circle S1

with radius R. One requires X(σ + 2π, τ) = X(σ, τ) + 2πwR, w ∈ Z, for one
of the coordinates. This leads to additional massless and massive states: On
the one hand, the Kaluza–Klein excitations with mass2 = (n/R)2, n ∈ Z

which decouple for R → 0 and, on the other hand, winding states with
mass2 = (wR/l2s)

2, which become massless for R → 0. These winding
states are characteristic for string theory and are not present in compacti-
fied field theories. They lead to a symmetry of the spectrum and the scat-
tering amplitudes of the bosonic string under the T -duality transformation
R → l2s/R, g → gls/R under which Kaluza–Klein and winding states are ex-
changed. In other words geometrically different compactifications correspond
to physically identically ground states of string theory. This symmetry implies
to regard ls as minimal length: Compactifications on a large circle is indis-
tinguishable form compactification on a small circle. In both cases the limits
R→∞ and R→ 0, respectively, lead to a continuum of massless states which
is interpreted as the decompactification of an additional dimension. The com-
pactification on S1 leads to an additional free parameter, the radius R of the
circle. Similar to the string coupling g it can be interpreted as the vacuum
expectation value of a massless scalar field (modulus); e.g. G25,25 = R2 for
the bosonic string compactified on a circle in the X25 direction.

The ground states of the compactified theory are restricted via T -duality
to either one of the two fundamental regions R ∈ [ls,∞) or R ∈ (0, ls, ]. While
T -duality is a symmetry of the bosonic string this is not the case for type
II strings: T -duality transforms type IIA theory on S1

R to type IIB theory
on S1

l2s/R
.

A simple generalization of a compactification on a circle is the compact-
ification on a dint-dimensional torus T dint. Here T -duality is a non-Abelian
discrete symmetry on the parameter space (moduli space) of the compact-
ification whose local coordinates are, among others, the components of the
metric on T dint.

Of physical interest is the case d = 4. For type II theories compactifica-
tion on T 6 leads, at the level of the low-energy effective action, to N = 8
supergravity and for the type I and the two heterotic theories to N = 4
Super–Yang–Mills (SYM) theory coupled to N = 4 supergravity. N = 1(2)
supergravity is obtained by compactification of the heterotic (type II) string
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on six-dimensional Calabi–Yau manifolds.7 The large number of topologically
different Calabi–Yau manifolds leads to many different four-dimensional the-
ories which differ in their spectra of string excitations. This, in turn, leads
to different low-energy effective actions which differ from each other in gauge
group, spectrum of massless particles, and interactions. Size and shape of the
Calabi–Yau manifold are parametrized by the (perturbatively) undetermined
vacuum expectation values of neutral (under the gauge group) scalar fields,
the moduli fields.

Discrete symmetries which act on the moduli space of a given compact-
ification and which are exact in every order of string perturbation theory
are called T-duality. Mirror symmetry of Calabi–Yau compactifications is a
non-trivial example of a T-duality. It states that compactifications on a pair
of topologically different Calabi–Yau manifolds, a so-called ‘mirror pair’, are
completely equivalent and undistinguishable. This, as already the simple ex-
ample of the compactification on a circle, demonstrates that strings probe
the geometry of a manifolds quite differently than point particle probes. One
therefore speaks of ‘string geometry’.

In the language of conformal field theory, compactification of a superstring
theory means that one replaces (10 − d) of the free superfields (X i, ψi) by a
superconformal non-linear sigma-model with target space K int and the same
central charge cint = 3dint/2. More generally one can take an ‘internal’ su-
perconformal field theory of the same central charge as long as it satisfies
consistency conditions such as modular invariance. Such a theory has, in gen-
eral, no formulation as a sigma-model and does thus not admit a geometric
interpretation. An analogous discussion also holds for heterotic theories where
the contributions of the additional fields λa or ΦI have to be taken into ac-
count.

More general compactifications than the one discussed so far are not only
specified by the metric on K int but by additional non-trivial background val-
ues of other massless bosonic fields. For example, a consistent compactification
of type IIB on AdS5×S5 needs a non-trivial background value for the self-dual
five-form field strength F5 which provides the necessary vacuum energy den-
sity to balance the curvature of each factor. As for Calabi–Yau manifolds this
compactification is an exact conformal field theory and it plays a prominent
rôle in the AdS/CFT correspondence which we discuss in Sect. 7.

For more general compactifications with background fields, their back-
reaction on the geometry demands that one gives up the (geometric) direct
product structure of the Ansatz and replaces it by a warped product where the
metric of the infinitely extended space-time depends on an overall scale fac-
tor – the warp factor – which can be a non-trivial function of the coordinates
of the compact space. Examples are compactifications where the Calabi–Yau
manifold is replaced by a manifold with SU(3)-structure (rather than SU(3)
holonomy). Such generalized compactifications arise when localized sources

7 Calabi–Yau manifolds are compact Kähler manifolds with SU(3) holonomy.
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for the background fields (D-branes, orientifold planes) and/or background
fluxes are present, i.e. non-vanishing VEVs for the (R,R) and (NS,NS) anti-
symmetric tensor fields (see also Sect. 6).

6 Duality and M-Theory

So far we have only discussed the perturbative quantization of strings which
propagate through a fixed classical background space-time. A complete theory
of quantum gravity should, however, dynamically generate the background
space-time. At this time, string theory has not yet achieved this, but there
has been recent progress within the AdS/CFT correspondence.

The main problem in taking space-time to be dynamical ab initio is that a
non-perturbative formulation of the theory does not yet exists. This situation
is quite unusual. One often encounters that a theory is, at least in principle,
known but in order to compute quantities of interest one must develop per-
turbative methods which allow approximate computations. In string theory
the situation is quite different: only the perturbation series is known while the
fundamental formulation from which it can be derived is still lacking.

One possible way to access the non-perturbative regime is via the dual-
ity between weakly and strongly coupled theories, a concept which is well
known for supersymmetric quantum field theories. It provides control over
the strongly coupled regime of a given theory via perturbative methods ap-
plied to the dual theory. The two theories which comprise a duality pair are
often very different perturbatively; they might differ, e.g., in their degrees of
freedom and their symmetries. The perturbative degrees of freedom of one
theory might be solitons, i.e. localized solutions of the classical equations of
motion of the weakly coupled dual theory. These solitons are not part of the
perturbative spectrum since their masses diverge as the coupling constant
g approaches zero. If the solitons become very light and weakly coupled as
g →∞, they might play the rôle of the elementary degrees of freedom of the
dual theory. A duality between a weakly and a strongly coupled theory is called
S-duality.

S-duality in string theory is non-perturbative in the power series expansion
in the coupling constant g, but it is perturbative in the expansion in ls. For T-
duality the situation is reversed. The non-perturbative nature in the expansion
in ls manifests itself, e.g. in mirror symmetry, through the contribution of
world-sheet instantons ∼ e−R

2/l2s , where R is the overall size of the Calabi–
Yau manifold. A discrete symmetry which is neither perturbative in g nor in
ls is called U-duality.

To prove S-duality (or U-duality) is difficult, since it presupposes a non-
pertubative formulation of the theory. However, one can check the duality
hypothesis on those solitonic states whose quantum corrections are control-
lable and whose masses, as functions of the coupling constants, can be exactly
determined at weak coupling. For these states an extrapolation to strong
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coupling is allowed and the comparison with perturbative states of the dual
theory is then possible. Such Bogomolny–Prasad–Sommerfield (BPS) states
are present in field and string theories with extended supersymmetry. They
have the distinctive property that they preserve some of the supersymmetries,
i.e. they are annihilated by some of the supercharges, the generators of the
supersymmetry algebra.

The BPS-spectrum of string theory contains, in particular, the D-branes.
In analogy to the coupling of an electrically charged particle to the Maxwell
potential A(1), an ‘electric’ p-dimensional Dp-brane couples to a (p + 1)-
form potential C(p+1). In addition to the electrically charged branes there
are also ‘magnetically charged’ branes. They are characterized through the
field strength (∗H)(8−p) which is dual to H(p+2) = dC(p+1). This means that
the object which is dual (in the sense of Hodge duality) to an electrically
charged Dp-brane is a magnetically charged (6 − p)-dimensional D(6 − p)-
brane. The potentials C to which branes couple are the massless fields in the
(R,R) sectors of superstring theories.

The (NS,NS) sector of the type II and the heterotic string theories also
contains an anti-symmetric tensor field Bμν to which their fundamental string
(F1) couples. The dual magnetic object is the five-dimensional NS5-brane.
The massless bosonic fields and the D-brane spectra of the different string
theories are summarized in Tables 1 and 2. The massless fermionic fields are
determined by space-time supersymmetry.

Branes were first discovered as classical solutions of the effective
supergravity theories. The supergravity solutions describe extended objects
and contain, in addition to a non-trivial space-time metric and the dilaton,
a non-vanishing (p + 2)-form field strength H(p+2). Subsequently the solu-
tions which couple to (R,R) fields got their string theoretic interpretation
as D-branes, namely the dynamical objects on which open strings end and

Table 1. Bosonic massless fields in type II theories, the closed string sector of type
I and in the heterotic theories. Gμν is the space-time metric, Bμν an anti-symmetric
tensor field (Kalb-Ramond field), and Φ the dilaton. Aμ is the vector potential of
the gauge groups E8 ×E8 and SO(32), respectively. C(p) is a p-form field with field
strength H(p+1) = dC(p). The field strength of C(4)+ is self-dual, H(5) = ∗H(5), and
H(0) is a non-propagating 0-form field strength. (The type I string also has SO(32)
gauge bosons from the open string sector)

Sektor (NS,NS) (R,R)

Type IIA Gμν , Bμν , Φ H(0), C(1), C(3)

Type IIB Gμν , Bμν , Φ C(0), C(2), C(4)+

Type I Gμν , Φ C(2)

Heterotic Gμν , Bμν , Φ,Aμ
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Table 2. D-brane spectra of superstring theories. The D(−1) brane of type IIB is
a D-instanton. The D9 brane in type I is degenerate. It implies that open strings
can move freely in the ten-dimensional space-time. All remaining D-branes are in
one-to-one correspondence to ‘electric’ (R,R)-potentials and their ‘magnetic’ du-
als. D-branes couple to these potentials as sources. T-duality changes the boundary
conditions of open strings, N↔D. This means that T-duality maps Dp-branes to
D(p± 1)-branes, depending on whether the T-duality direction is along (−) or per-
pendicular (+) to the world-volume of the brane. Type II and heterotic theories also
have a NS5 brane

Dp-branes p

type IIA 0,2,4,6,8

type IIB -1,1 3 5 7

type I 1 5 9

to which they transfer space-time momentum. Those which couple to Bμν
or its dual are identified with the fundamental string and the NS5 brane,
respectively. If one computes the tension (energy density) of the F1 solution
(which carries ‘electric’ B-charge) one finds that it is independent of the string
coupling constant. The tension for the NS5-brane (which carries ‘magnetic’
B-charge) however, behaves as τNS5 ∼ 1/g2 while that of D-branes depends on
the string coupling as τD ∼ 1/g. This means that the NS5- and the D-branes
are heavy and decouple in the weak coupling limit g → 0. They are part of the
non-perturbative sector of the respective pertubatively defined string theory.
At strong coupling, g � 1, the BPS-p-branes become light. In some cases they
can be viewed as the fundamental objects of a dual theory which possesses a
perturbative expansion in powers of gdual = 1/g.

An example of this in d = 10 is the S-duality between the heterotic SO(32)-
string and the type I string. The coupling constants of these two theories are
inverse of each other, and the D-string of type I is mapped, in the limit of
strong coupling, to the fundamental heterotic string.

The type IIB theory in d = 10 possesses both an F-string and a D-string.
The relation between their tensions is τF1/τD1 = g, i.e. at strong coupling the
D-string is much lighter than the F-string. The type IIB theory is self-dual
under S-duality, i.e. it is invariant under g → 1/g and simultaneous exchange
of D- and F-strings and their dual magnetic objects, the D5 and NS5 branes.
T-duality relates the type IIB theory with the type IIA theory. T-duality also
relates the two heterotic theories with each other.

The type IIA theory has BPS bound states of n D0-branes with mass
m ∼ n/(gls). These states can be interpreted as Kaluza–Klein excitations
of an 11-dimensional theory which has been compactified on an S1 with ra-
dius R11 = gls (cf. the discussion of S1 compactification in Sect. 5). In the
strong coupling limit g → ∞, the type IIA theory possesses 11-dimensional
Poincaré invariance. At low energies the massless excitations and their
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interactions are described by the unique 11-dimensional supergravity the-
ory. Using G

(11)
N ∼ R11G

(10)
N ∼ M−9

11 , the characteristic mass scale of the
11-dimensional theory is M11 = g−1/3l−1

s . At energies O(M11), neither string
theory nor supergravity are adequate descriptions. Both have to be superseded
by an as yet unknown theory which has been given the name M -theory. The
strongly coupled E8×E8 heterotic string can also be interpreted as a compact-
ification of M-theory, namely on an interval. The gauge degrees of freedom of
one E8-factor are located on each of the two ten-dimensional boundaries at
the end of the interval.

The duality relations imply that the five string theories are merely dif-
ferent perturbative approximations of one and the same fundamental theory.
The fact that 11-dimensional supergravity also appears indicates that the five
string theories cannot provide a complete description in the strong coupling
regime. The hypothetical theory, from which the five string theories and 11-
dimensional supergravity can be derived in different approximations, is called
M-theory. The elementary excitations of this theory depend on the approxi-
mation. As 11-dimensional theory it possesses membranes, i.e. M2-branes, and
their dual objects, M5-branes. The fundamental string of type IIA arises upon
compactification on a circle of radius R11 where the M2 branes is wrapped
around the circle.

In addition to the duality relations which was we have discussed here, there
are other connections between various string theories, in the critical dimension
as well as in the compactified theory. In all non-perturbative dualities branes
play an essential rôle.

In the presence of D-branes one has, besides the excitation modes of the
closed string, also those of the open string whose endpoints move along the
world-volume of the branes. For instance, at low energies (ls → 0), the dy-
namics of the massless modes of N coincident D3-branes is described by a
four-dimensional N = 4 SYM-theory with gauge group U(N). This gauge
theory is localized on the world-volume of the D3-branes. Its gauge coupling
constant is g2

YM = g. In the limit ls → 0 the modes of the open string and grav-
ity decouple. Many different theories can be constructed by an appropriate
choice of D-brane configurations and e.g. many features of the vacuum struc-
ture of the supersymmetric extension of QCD (SQSD) can be ‘understood’ in
the brane picture.

7 AdS/CFT

String theory dates back to the pre-QCD era, as an attempt to understand
the scattering data of hadrons. Veneziano ‘guessed’ a formula (known as the
Veneziano formula) which correctly incorporates the empirically motivated
duality hypothesis, which states that the complete four-point amplitude can
be written either as a sum over only s-channel poles or as a sum over only
t-channel poles. It was soon realized that the Veneziano amplitude can be
derived from a theory of (bosonic) strings. Serious problems related to the
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high-energy behaviour of the Veneziano amplitude and, in particular, the dis-
covery of QCD as a renormalizable QFT made string theory as a theory of the
strong interaction obsolete. Furthermore, the discovery of a critical dimension
and the presence of a massless spin-two particle were considered as indications
that string theory might be the correct framework for a theory of quantum
gravity. This has become the prevailing point of view.

However, more recently, based on the AdS/CFT conjecture of Maldacena,
string theory has become a powerful analytic tool for studying strongly cou-
pled gauge field theories. The most interesting such theory is QCD at low
energies. While no gravity dual has yet been found, many (supersymmetric)
generalizations have been studied using the so-called ‘gauge theory - gravity
duality’.

In its simplest version, the AdS/CFT correspondence arises from analysing
a system of N coincident D3 branes. For small gN = g2

YMN , i.e. for small ’t
Hooft coupling, the world-volume theory on the branes is the conformally in-
variant U(N) N = 4 supersymmetric gauge theory. Its degrees of freedom
arise from the massless excitations of the open strings ending on the branes.
This theory is coupled to supergravity in the ten-dimensional space-time. The
supergravity fields arise from massless excitations on the closed strings. As
long as gN is small, one can neglect the backreaction of the branes on the
geometry and the assumption of the D3 branes embedded in ten-dimensional
Minkowski space-time is appropriate. In the limit ls → 0 the gauge theory on
the brane decouples from the gravity theory in the bulk. If gN becomes large,
the backreaction can no longer be neglected and the system is better described
by the geometry of the brane solutions of type IIB supergravity. The above de-
coupling limit now leads to a decoupling of the region close to the branes, the
so-called ‘near-horizon region’ which has AdS5×S5 geometry, from the asymp-
totic region, where one obtains a theory of free gravitons in ten-dimensional
Minkowski space-time. Comparison then suggest a correspondence between
four-dimensional N = 4 SYM theory and type IIB string theory compactified
on AdS5 × S5. It also implies the relations (R/ls)4 = 4πgN = 4πg2

YMN be-
tween the string scale ls, the curvature radius R of the background geometry,
the string coupling constant g, the rank of the gauge group N , and the gauge
coupling constant g2

YM. One can think of the gauge theory degrees of freedom
to be located at the conformal boundary of AdS5 which is four-dimensional
Minkowski space-time (up to global issues). In this sense, the AdS/CFT cor-
repondence is a very concrete realization of the holographic principle (see also
Sect. 8). One can further interpret the radial coordinate as the energy scale
in the field theory.

As long as the radius of curvature is large and the string coupling constant
is small, one can approximate the type IIB string theory by IIB supergravity
on this background. One then obtains a duality between a quantum field the-
ory – N = 4 SYM in the large-N limit – and a classical gravity theory.
Evidence for this duality is provided by a matching of the symmetries: the
isometry group of the space-time coincides with the global symmetries of the
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gauge theory (conformal invariance and R-symmetry) and this extends to
the supergroups. In particular the AdS-factor of the geometry indicates that
the dual field theory is conformally invariant (which N = 4 SYM is).8 More
detailed checks, which do not rely entirely on the symmetries, have been per-
formed. For instance, the conformal anomaly of N = 4 SYM, which is clearly
a quantum effect of a four-dimensional field theory, can be computed via a
classical gravity calculation. A precise matching between Kalazu–Klein states
of the supergravity theory and gauge invariant operators is possible and many
of their dynamical properties can be computed on both sides of the correspon-
dence. Needless to say that they match precisely.

One obstacle to go beyond the supergravity approximation on the string
theory side is that this requires the quantization of string theory compacti-
fied on AdS5 × S5, which consists, in addition to a background metric, of a
non-vanishing value of the self-dual (R,R) five-form field strength. At present,
quantization in (R,R) backgrounds (as opposed to (NS,NS) backgrounds) is
still an unsolved problem, at least in the so-called ‘RNS’ (Ramond–Neveu–
Schwarz) formalism on which most of the string literature is based. But it has
been shown that AdS5 × S5 is a consistent background for string compactifi-
cation to all orders in string pertubation theory.

Considerable progress has been made in the so-called ‘BMN’ (Berenstein–
Nastase–Maldacena) limit where relevant configurations on the string side are
classical solutions of the string sigma-model which correspond to macroscopi-
cally large strings rotating in the background geometry. On the gauge theory
side the dual operators are those with large conformal dimension and R-charge
(which is dual to the SO(6) isometry of S5).

Many generalizations of the correspondence have been constructed. For
instance, in order to reduce the amount of supersymmetry one replaces S5

by a five-dimensional compact manifold X5 which can serve as the base of
a six-dimensional Ricci-flat Kähler cone, i.e. X5 must be a Einstein–Sasaki
manifold (e.g. for X5 = S5 the Kähler cone is simply R

6). Generalizations
to non-conformal theories are neccessary if one wants a dual description of
confining gauge theories (such as QCD). In fact, one can give a rather general
criterium which the background geometry has to satisfy in order that the
dual gauge theory is confining. This relies on the picture of the QCD string
as a fundamental string which connects two quarks which are located on the
‘boundary’ of the dual geometry, but which plunges into the bulk (cf. Fig. 7)
as this is the geodesic which connects its two endpoints. The expectation value
of the Wilson loop 〈W [C]〉 ∼ e−TE(L), where E(L) is the potential energy, is
the exponentiated area of the world-sheet of the open string which boundary
C, computed with the Nambu–Goto action in the given background geometry.
If one does this in the AdS5 × S5 geometry one finds E(L) ∼ T/L, i.e. the
Coulomb law. In a confining dual geometry one finds instead E(L) = σTL,

8 More generally, asymptotic AdS geometries are dual to field theories which are
conformally invariant (fixed point of the beta-function) in the UV.
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Fig. 7. ‘QCD’ string

where σ is the QCD string tension. Such a confining geometry must contain
an additional scale which breaks conformal invariance, in terms of which σ
can be expressed.

However, the regions in parameter space where, on the one hand, the
gauge theory is weakly coupled and perturbation theory appropriate and, on
the other hand, where the string coupling is weak and the space-time curva-
ture small, i.e. where the supergravity approximation of string theory is good,
do not overlap. Therefore, a direct comparison is only possible for protected
operators which exists in field theories with extended supersymmetry (BPS
states). But one can use the conjectured correpondence to arrive at ‘predic-
tions’ about strongly coupled gauge theories, e.g. about their phase structure,
the spectrum of mesons, chiral symmetry breaking, etc. in regimes where other
analytical methods are not available. All these concepts have a geometric ana-
logue within the dual gravity description. Also, the interpretation of the radial
coordinate as the energy scale has been made precise, e.g., in extracting the
gauge theory beta-function from geometrical data.

Other generalizations of the Maldacena conjecture lead to holographic de-
scriptions of theories in other than four dimensions. For instance, compactifi-
cation of 11-dimensional supergravity on AdS7×S4 leads to a six-dimensional
theory of interacting tensor multiplets on the world-volume of coincident M5-
branes. Again, the number of branes N is related to the radius of curvature
of the geometry (R ∼ lpN

1/3). Nothing is known about this theory from the
field theory side but definite predictions, e.g. about the number of degrees
of freedom, i.e. that it grows as N3, can be obtained from its dual gravity
description.

Perhaps the most important lesson from these developments is the dual-
ity between quantum field theories (without gravity) and higher-dimensional
gravitational theories (such as supergravity or string theory). A dual de-
scription of real QCD (four-dimensional, non-supersymmetric, SU(3) gauge
group, etc.) has not yet been found. But it has been demonstrated that the
high energy behaviour of the Veneziano amplitude, when interpreted within
AdS/CFT context (generalized to non-conformal backgrounds) where the
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radial coordinate serves as the energy scale, changes and that it is no longer
in disagreement with experiments.

8 Black-Hole Entropy

Black holes are a major testing ground for ideas about quantum gravity. They
are subject to the laws of black-hole mechanics which formally have the same
structure as the laws of thermodynamics. Combining this with the Hawking
effect, which allows to assign a temperature to a black hole, this leads to the
identifications

T =
κS
2π

(

�

c

)

, Sthermo =
A

4

(

c3

GN�

)

. (8.1)

Here T is the Hawking temperature, Sthermo is the Bekenstein–Hawking en-
tropy, κS the surface gravity, and A the area of the event horizon.9 The occur-
rence of � and GN clearly shows that black-hole entropy can only be described
within the framework of a theory of quantum gravity. Below we will often use
Planckian units and set c = � = GN = 1. In analogy to the relation between
thermodynamics and statistical mechanics, this suggests that while Einstein
gravity describes black holes at the macroscopic level, a theory of quantum
gravity should provide the microscopic description. In particular, it should be
possible to relate the thermodynamical entropy to a statistical entropy, which
measures the degeneracy of microscopic states for a given macroscopic state,

Sstat = logN(M,Q, J) . (8.2)

Here the macroscopic state of a black hole is characterized by its mass M ,
charge Q, and angular momentum J , and N(M,Q, J) denotes the number
of microscopic black-hole states with given values for these quantities. It is a
benchmark for any candidate theory of quantum gravity whether such micro-
scopic states can be identified and counted, and whether the thermodynamical
and statistical entropies agree.

The simple fact that the entropy is proportional to an area (the area of
the black -hole’s event horizon) rather than a volume, leads to the concept
of holography. The information contained inside the region enclosed by the
horizon is represented as a hologram on the horizon: all information about
the inside is stored on the holographic screen.10 This is in sharp contrast with

9 For a Schwarzschild black-hole κS = c4/(4GNM) and A = 4π
(

2MGN
c2

)2

.
10 More generally, the holographic principle asserts that the information contained

in some region of space can be represented as a ‘hologram’ – a theory which
‘lives’ on the boundary of that region. It furthermore asserts that the theory on
the boundary of the region of space in questions should contain at most one bit
of information per Planck area l2Planck.
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what we expect from statistical mechanics and local quantum field theory
where the entropy is an extensive quantity and should thus be proportional
to the volume of the system. The lesson we learn from this is that the nature
of the degrees of freedom of quantum gravity is quite different from that of a
local quantum field theory.

In this section we discuss some of the research done on black-hole entropy
in string theory. Except for the initial discussion of the heuristic string–black
hole correspondence, we restrict ourselves to BPS black holes, i.e. black holes
which are invariant under a subset of the supersymmetry transformations of
the underlying string theory. For BPS black-holes, string theory provides a
quantitative explanation of black-hole entropy. The agreement between ther-
modynamical and statistical entropy extends beyond the leading term in the
semiclassical limit. Moreover, the calculations show that at subleading level
the entropy of stringy black holes follows Wald’s generalized formula for black-
hole entropy, which deviates from the simple area law once quantum correc-
tions (higher derivative corrections) to the Einstein–Hilbert action are taken
into account.

We first discuss the heuristic string–black hole correspondence which, while
qualitative, has the virtue to apply to Schwarzschild-type black holes. The
basic idea is that ‘heavy strings states are black holes’. Let us start with
string perturbation theory in flat space. Free strings have an infinite tower of
states of ever increasing mass, m2 ∼ n

α′ , n ∈ N. If we take the string coupling
g to be finite, but small, the feedback of a sufficiently light string state on its
ambient space-time is negligible. A rough way of estimating this feedback is
to compare the characteristic length scale of string theory, lS =

√
α′, to the

gravitational scale of a string state of mass m, i.e. its Schwarzschild radius
rS ∼ GNm ∼ √

nα′ g2. Here we used the relation GN ∼ g2α′ between the
four-dimensional Newton constant GN , the string scale

√
α′, and the string

coupling constant, together with the mass formula.11 The string length
√
α′

is the smallest length scale which can be resolved by scattering string states.
Since the feedback of a string state on the space-time geometry is estimated by
rS , it is negligible if

√
α′ � rS . For given coupling this requires that the mass

of the state is sufficiently small, while for given mass the coupling must be
sufficiently small. In this regime the number of string states of given mass can
be counted, since we know the spectrum of free strings in flat space-time. The
asymptotic number of states is governed by the Hardy–Ramanujan formula
and grows like e

√
n. In other words the statistical entropy of string states

grows like
Sstat ∼

√
n (8.3)

for large n.
Let us now either increase the mass, at fixed coupling, or increase the

coupling, at fixed mass. Then rS will grow relative to
√
α′. While we do not

11 We assume that the additional dimensions required for consistency have been
compactified on a manifold of size (α′)3.
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know what happens in detail, we know qualitatively what happens in the op-
posite extreme regime rS �

√
α′, where the gravitational scale is much larger

than the string scale. Here we can use that the long-wavelength approxima-
tion of string theory is provided by an effective field theory, which can be
constructed using string perturbation theory. The effective action has an ex-
pansion in string loops, controlled by g, so that we need to keep the string
coupling small enough. Moreover, it has an expansion in the string length

√
α′.

The long-wavelength or low energy expansion of the action is an expansion in
derivatives. σ-model loop corrections (i.e. higher orders in α′) which appear
in each order in the genus expansion (higher orders in g) give rise to higher
derivative terms.

In this regime gravity is described by the Einstein–Hilbert action plus an
infinite series of higher curvature terms. For the time being, we only take into
account the leading Einstein–Hilbert term. Then we are in the realm of general
relativity and expect that an object which sits within its Schwarzschild radius
forms a black hole. Therefore our original string state should correspond to
a black-hole solution of the effective field theory. The associated thermody-
namical entropy is the Bekenstein–Hawking entropy. For a Schwarzschild-type
black hole carrying the mass of the string state we obtain

Sthermo =
A

4GN
� GNm2 � g2n .

Comparing this to the statistical entropy of string states (8.3), we see
that both entropies are different, in general. However, they agree, up to a
numerical constant of order unity, when the Schwarzschild radius is of the
order of the string scale, rS �

√
α′, or, equivalently, for a string coupling

of order g2
√
n � 1. The observation that the entropies of strings and black

holes match here support the idea of a phase transition (or maybe a smooth
crossover) from a perturbative string regime to a black-hole regime. In par-
ticular, this provides a scenario for the endpoint of the decay of black holes
through Hawking radiation: once the black hole has shrunk to a size of order√
α′, it converts into a highly excited string state, which then decays accord-

ing to the rules of string perturbation theory. It is encouraging that a string
has the right number of states to account for the states of a black hole with
equal mass. This scenario is compatible with unitarity, and elaborates on the
old idea of a correspondence between black holes and elementary particles.
The idea of a phase transition is further supported by the observation that
the Hawking temperature of a black hole of size

√
α′ equals the Hagedorn

temperature, which is interpreted as the limiting temperature for a grand
canonical ensemble of strings.

While this scenario is broad and appealing, it is very qualitative. In par-
ticular, the string and black-hole entropy only match up to a multiplicative
factor of order unity, and the interpolation between the perturbative string
regime and the black-hole regime is bold, because one has no control over the
intermediate regime. There is no a priori argument which connects the number
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of states in the two extreme regimes, which in principle could change dras-
tically. And indeed, we saw that the two entropies are different in general,12

indicating that the number of states changes when going from one extreme
regime to the other.

Therefore we will now focus on a subset of states which are under much
better control. Here, the entropies of strings and black holes will not just match
for some particular value of the coupling, but they will be equal. Here ‘equal’
means equality up to additive terms which are subleading in the semiclassical
limit, corresponding to large mass. In particular, there is no undetermined or
mismatching factor between the leading terms of the two entropies. The rele-
vant subclass of states are the BPS states, which sit in special, so-called ‘short’
or BPS representations of the supersymmetry algebra. BPS states carry cen-
tral charges under the supersymmetry algebra, and have the minimal mass
compatible with their central charges. In supergravity the central charges
are determined by the electric and magnetic charges under gauge interac-
tions which are mediated by the gauge bosons in the supergravity multiplet
(graviphotons).

In string perturbation theory, BPS states appear as a special subset of
the string states. In the corresponding effective supergravity theory, BPS
states are realized as supersymmetric solitons, more specifically as extremal
black-hole solutions with Killing spinors. The comparison of black hole and
string entropy proceeds by constructing BPS black-hole solutions with given
charges and by comparing the resulting entropy to the number of string BPS
states with the same mass and the same charges. In various examples where
both entropies have been computed in their respective regimes, it has been
found that they agree, even when including subleading corrections.

Let us discuss an explicit example for the quantitative version of the string–
black hole correspondence. We consider four-dimensional string compactifica-
tions with N = 4 supersymmetry. For concreteness, we employ the realization
through the heterotic string, compactified on a six-torus. For generic moduli
the gauge group of this compactification is U(1)28, and the electric charges
carried by elementary string states can be combined into a vector q which
takes values in a 28-dimensional lattice Γ22,6, which comes equipped with an
indefinite bilinear form of signature (22, 6). Incidentally, the problem of count-
ing BPS states of charge q is equivalent to counting the number of states for
the open bosonic string in 26 dimensions. Hence the result follows from the
Hardy–Ramanujan formula. The corresponding entropy is

Sstat = 4π

√

|q2|
2

+ · · · . (8.4)

Here q2 is the (indefinite) scalar product of the charge vector q ∈ Γ22,6 with
itself. We have displayed the leading contribution in the limit of large charges
12 Note that the black-hole entropy is bigger than the string entropy if we are in

the black-hole regime, and vice versa.
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|q2| � 1 (which, through the BPS condition, implies large mass). There are
corrections, starting with a term proportional to log |q|2, followed by an infi-
nite series of terms which involve negative powers of |q2|, plus further correc-
tions which are exponentially suppressed for large charges.

The corresponding effective field theory is, to leading order in derivatives,
an N = 4 supergravity theory coupled to 22 vector multiplets. It turns out
that BPS solutions with charges q always have a null singularity, i.e. the
event horizon coincides with the singularity and has vanishing area. As a
consequence, the Bekenstein–Hawking entropy is zero

Sthermo =
A

4
= 0 ,

and disagrees with the statistical entropy of string states. This is, however,
not the end of the story. Since space-time curvature becomes large close to the
horizon, one cannot trust the two-derivative effective action. Once the leading
curvature-squared terms are taken into account, the null singularity is replaced

by a smooth horizon of area A = 8π
√

1
2 |q2|. The corresponding Bekenstein–

Hawking entropy SBekenstein−Hawking = A
4 = 2π

√

1
2 |q2| is finite, but disagrees

with the statistical entropy by a factor 2. However, as pointed out some time
ago by R. Wald, the area law has to be replaced by a more refined formula,
once the gravitational action contains higher derivative terms. In contrast to
the naive area law, Wald’s modified law assures that the first law of black-
hole mechanics remains valid. For the case at hand, Wald’s modified formula
amounts to an additive correction term A

4 , which leads to precise agreement
between the leading term of the thermodynamical entropy

Sthermo = 4π

√

|q2|
2

+ · · · (8.5)

and the statistical entropy. Like the statistical entropy, the thermodynamical
entropy is further modified if subleading corrections are taken into account.
For the thermodynamical entropy, the corrections come from further sublead-
ing terms in the effective action. As for the statistical entropy, these corrections
are logarithms, inverse powers, and exponentials in |q2|.

The next step is therefore to compare the subleading contributions to
both entropies. In the above example, no full agreement between statistical
and thermodynamical entropy has been achieved to date. The problem seems
to be related to the fact that for BPS black holes in N = 4 compactifications,
which carry only electric charge, the scalar fields take values in a particular
subspace of the moduli space, which is singular unless instanton corrections
are taken into account. This reflects itself in the fact that black-hole solution
has a vanishing horizon area at leading order. While further work is needed to
better understand this class of BPS black holes, the situtation is much better
for generic BPS black holes, which carry both electric and magnetic charges.
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The most general BPS black-hole solution of an N = 4 compactification
carries 28 electric charges q, but also 28 magnetic charges p, which lie on a
lattice of the form Γ22,6.13 When using the two-derivative effective action, the
entropy of such dyonic BPS black holes is

Sthermo = π
√

p2q2 − (p · q)2 . (8.6)

Observe that for purely electric charge the entropy vanishes. This is the
subcase we discussed above. What are the corresponding string theory mi-
crostates? Fundamental strings do not carry magnetic charges with respect to
the gauge group U(1)28. However, magnetic charges are carried by heterotic
five-branes, which are solitonic objects occurring in the heterotic string theory.
Dyonic BPS states with arbitrary electric and magnetic charge correspond to
bound states of fundamental heterotic strings and heterotic five-branes. The
number of BPS states with given charges is known in terms of an integral
representation. When evaluating this integral at its leading saddle point, one
recovers (8.6). But as in the case (8.4) there are subleading corrections to
both the statistical and thermodynamical entropy. This time the corrections
agree even when including contributions which are exponentially suppressed
for large charges. At the level of the effective action, this corresponds to in-
cluding the contribution of an infinite series of instanton corrections to the
higher-derivative terms. The agreement crucially depends on using Wald’s
modified formula instead of the naive area law.

There are several other types of brane configurations where a quantitative
agreement between statistical and thermodynamical entropy, including sub-
leading corrections, has been found. In particular, the first examples of such
a matching involved D-branes, rather than fundamental strings and solitonic
five-branes. With this amount of evidence, it is fair to say that string theory
can account quantitatively for the entropy of BPS black holes. String theory
is unrivaled in that the matching of statistical and thermodynamical entropy
does not involve the tuning of free parameters, and that the matching extends
to subleading corrections and is sensitive to the distinction between Wald’s law
and the area law. This success also illustrates that a consistent perturbative
theory of quantum gravity accounts for much more than ‘graviton scatter-
ing in a fixed background’. In particular, string perturbation theory can be
used to derive higher curvature corrections to the Einstein–Hilbert action.
These in turn modify black-hole solutions, smooth singularities, and give con-
tributions to the entropy. These are genuine quantum gravity effects, as the
higher-derivative terms are generated by quantum corrections.14 While the

13 By Dirac quantization, electric and magnetic charges lie on dual lattices. However,
the charge lattice turns out to be self-dual, so that one has two copies of the same
lattice.

14 To be precise, the terms relevant for the N = 4 compactifications discussed above
are ‘tree-level plus instantons’ (in the string coupling g) for the heterotic string
and ‘one-loop’ for the dual description by the type-II string.
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agreement of statistical and thermodynamic entropy strongly suggests that
string theory has the right number of degrees of freedom to account for the
microstates of BPS black holes, a more direct understanding of these states as
states of black holes is certainly needed. Recently, an intriguing proposal has
been put forward by H. Ooguri, A. Strominger, and C. Vafa, which defines a
‘black hole partition function’ and relates it to the partition function of the
topological string. This could be a major step forward in this direction.

A clear limitation of the approach described here is that it relies on su-
persymmetry, or, to be precise, that it applies to supersymmetric states only.
However, there are other approaches to black holes within string theory, which
we are not able to discuss here for lack of space. But let us mention that re-
cently there has been considerable interest in studying non-supersymmetric
extremal black holes. It turns out that many features of supersymmetric black
holes carry over, and in particular that higher derivative corrections can be
taken into account. Moreover, black-hole entropy has been studied extensively
in the context of the AdS/CFT correspondence, which can be viewed as a con-
crete realization of the ‘holographic principle’.15 Finally, a new line of thought
is the ‘fuzzball proposal’, which views BPS black holes as superpositions of
smooth geometries, one for each black-hole microstate. This approach might
be a first step towards a detailed understanding of the interpolation between
the string perturbative regime and the black-hole regime.

So far, string theory does not yet provide a complete account of black-hole
physics. Nevertheless, black-holes are clearly the most successful application
of string theory in the gravitational realm. They will continue to be a major
subject of interest in the string community, and, maybe, the results will even
reshape our understanding of what string theory is.

9 Approaches to Phenomenology

As we discussed in Sect. 5 the spectrum of excitations of a string compactified,
e.g., on a Calabi–Yau manifold, contains a finite number of massless excita-
tions L and an infinite number of massive modes H . Their mass is of the order
of the characteristic scale of the string Ms. Among the massless modes one
finds generically a spin–2 degree of freedom which is identified with Einstein’s
graviton. In addition massless spin–1 gauge bosons of some gauge group G,
families of massless chiral fermions in fundamental and anomaly free repre-
sentations of G and elementary spin–0 bosons which can serve as candidates
for Higgs-like fields can appear among the massless modes. Such string back-
grounds are not only a candidate for a consistent quantum gravity but also a
candidate for a unified theory of all known particles and their interactions.

In order to check this proposal, it is necessary to identify the standard
model (SM) as the low energy limit. This amounts to the identification of the
15 The duality with a unitary quantum field theory strengthens the claim that there

is no information loss during black-hole evaporation via Hawking radiation.
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particle spectrum of the standard model (or some generalization thereof) as
well as their couplings in a low-energy effective Lagrangian Leff . The effective
Lagrangian can be computed systematically in perturbation theory by study-
ing string scattering processes at energy scales E far below the characteristic
scale Ms. Demanding that the S-matrix of the effective field theory coincides
with the string S-matrix for energy scales, E � Ms determines the effective
Lagrangian.

However, the programme just outlined has a number of serious drawbacks.
First of all, the S-matrix elements in string theory can currently only be reli-
ably computed as a perturbative expansion in the string coupling g. Second
of all, a large class of consistent S-matrices, each corresponding to a two-
dimensional conformal field theory, do exist. This in turn leads to a large
number of different effective theories with different Leff . Every set of S-matrix
elements (or equivalently every consistent CFT) can be viewed as a differ-
ent vacuum of the same string theory. Each string vacuum is as good as any
other or, in other words, the vacuum is degenerate and there is presently no
understanding what selects one vacuum over another and lifts the vacuum
degeneracy. Finally, string theory only contains one scale Ms and one dimen-
sionless coupling g and hence all light modes L are exactly massless. This
is reminiscent of a standard model without the Higgs mechanism where all
fermions and gauge bosons are also exactly massless. Thus, one has to un-
derstand what mechanism generates the weak scale MZ (and why it is so
small).

Given this state of affairs there are a number of possible strategies to make
further progress. One approach – commonly called ‘string phenomenology’ –
does not attempt to explain the mechanism which lifts the vacuum degeneracy
and chooses the true vacuum. Rather it surveys the whole space of string
ground states and looks for particularly ‘promising’ candidate vacua. The
criteria of what is a ‘promising’ string vacuum is of course ambiguous and
different aspects have dominated this field over the years. After the discovery
of the heterotic string and its Calabi–Yau compactification in 1984/85 all
of string phenomenology focused on vacua of the E8 × E8 heterotic string
with four flat space-time dimensions with Minkowskian signature, a gauge
group G ⊂ E8 × E8 which is big enough to contain the SU(3) × SU(2) ×
U(1) of the SM and at least three light chiral generations. In addition, N =
1 local space-time supersymmetry was imposed at Ms since it seems very
difficult to understand how the hierarchy MZ/Ms can be generated and kept
stable without supersymmetry.16 Furthermore, most of the known consistent
string vacua with space-time fermions are already supersymmetric and within
our current understanding supersymmetry appears to be a plausible (if not
necessary) symmetry of string theory.

16 N = 1 is chosen since such supersymmetric theories can easily have chiral
fermions. This is not possible for N > 1.
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Almost all string vacua contain gauge neutral scalar fields M i (‘moduli of
the compactification’) which are flat directions of the perturbative effective
potential. Thus their vacuum expectation values (VEVs) are undetermined
in perturbation theory and therefore they are additional free parameters of
a given string vacuum. They set the (inverse) gauge couplings g−2

YM and the
Yukawa couplings Y of the theory. Thus, as in any QFT, both the gauge
couplings and the Yukawa couplings are free parameters of the effective low-
energy string theory. However, the situation here is slightly better than in a
QFT. First of all, the fact that the couplings depend on scalar field VEVs
opens up the possibility of a dynamical determination of the couplings. If we
understood what mechanism lifts the flat directions and induces a 〈M i〉 we
would have a dynamical way of understanding the values of the dimensionless
couplings gYM and Y . Furthermore, it is quite possible that for a given vacuum
the ratio of Yukawa couplings displays some special properties which can be
tested experimentally.

The perturbative heterotic string has the additional feature that the gauge
coupling is universal at the tree level. The generic gauge group is a product of
simple factors G =

∏

aGa with gauge couplings ga for each factor Ga which
are identical even without the existence of a covering GUT group

g−2
a = Re〈Φ〉 for all a , (9.1)

where Φ is the dilaton field. (Strictly speaking there is an integer normaliza-
tion factor ka in (9.1) which we have omitted here for simplicity.) Thus the
perturbative heterotic string very generically predicts a universal gauge cou-
pling. It also predicts the scale at which the coupling constants unify to be
Ms ≈ 5 · 1017 GeV. Current electro-weak precision data seem to favour a uni-
fication of the gauge couplings at approximately 3 · 1016 GeV which is indeed
remarkably close to the string value. However, given the present precision the
mismatch of a factor of 20 cannot be simply ignored.

Despite some of the successes of the heterotic string vacua there are a
number of questions left unanswered in the perturbative approach outlined
above. We still have to understand how the light modes get their masses,
how MZ and the hierarchy is generated, what lifts the vacuum degeneracy
and induces VEVs for the M i, and finally how supersymmetry is broken at
low energies. The belief (and hope) is that all of these problems are just
an artefact of string perturbation theory and that once we understand the
non-perturbative phase of string theory these problems will have a (hopefully
realistic) solution.

Since we lack a fully developed non-perturbative formulation of string the-
ory there are various ways to argue the structure of possible non-perturbative
corrections. First, one might assume that the dominant non-perturbative ef-
fects arise at energy scales well below Ms and therefore can be described by
field-theoretic means. Clearly these non-perturbative effects are part of string
theory and the real assumption is that they dominate over the ‘stringy’ effects.
This assumption is partly motivated by the fact that in order to generate a
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hierarchy these non-perturbative effects have to occur at an energy scale well
below Ms. An example of such a non-perturbative effect is gaugino conden-
sation in a hidden sector which can be analysed already in supergravity. The
hidden sector which has no renormalizable interactions with the observable
sector is taken to be an asymptotically free non-abelian gauge theory which
is weakly coupled at Ms but becomes strongly coupled at

Λc = MPl e
− 8π2

bg2
YM �MPl , (9.2)

where b is the coefficient of the one-loop β-function. Such hidden sectors do
indeed exist in string theory, the matterless E8 of Calabi–Yau compactification
of the heterotic string is only one example. As we already discussed, the gauge
couplings are field dependent in string theory and thus a non-trivial potential
for M i is generated

g−2
YM(M i)→ Λc(M i) → Vnp(M i) . (9.3)

At the minimum of V supersymmetry can be spontaneously broken and
non-trivial VEVs for M i can be generated. However, generically a large cos-
mological constant arises in almost all of the models considered so far and
no realistic scenario satisfying all phenomenological constraints has been con-
structed. As a consequence a more detailed low-energy phenomenology of such
models has not been developed.

In recent years a slight variation on this setup has been studied which
goes under the name of ‘Brane World Scenarios’. Here the standard model
or its generalization lives on a stack of space-time filling D-branes in a type
II bulk. Supersymmetry is spontaneously broken by additionally turning on
background fluxes in the bulk already at the tree level. The fluxes generate
a potential which fixes some of the moduli but in general additional non-
perturbative effects have to be employed in order to fix all of them and to
obtain a (meta-stable) ground state. This aspect is particularly important if
one attempts to construct de Sitter vacua with a small cosmological constant.
A detailed analysis of these ‘Brane World Scenarios’ is currently under way.

If the gauge degrees of freedom of the standard model arise as excitations
of a D-brane they can be viewed as localized on a three-dimensional plane
within a higher-dimensional space. This implies that the ‘extra’ dimensions
can only be probed by the gravitational interaction. Currently Newtons 1

r
law is experimentally established down to the sub-millimeter range while the
Coulomb 1

r law has been established in Bhabha-scattering at LEP down to
10−18 m. This opens up the theoretical possibility of ‘large extra dimension’
which are only transparent for gravity. If they are large enough they can be
seen as deviations from Newtons 1

r law in gravitational torsion experiments or
at LHC by producing appropriate Kaluza–Klein excitations. The phenomeno-
logical signatures of such scenarios have been studied in detail.
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10 Open Questions

The most obvious shortcoming of ‘perturbative string theory’ is that it is lim-
ited to a set of rules for computing on-shell scattering amplitudes in an on-shell
background. If we want to address conceptual issues of quantum gravity this is
a double handicap: quantities can only be computed as formal power series in
the string coupling, and one has to fix an on-shell background in advance. Per-
turbative and non-perturbative dualities have certainly enhanced the range
of quantities which can be computed, but without changing these points fun-
damentally. Direct non-perturbative methods, such as an instanton calculus,
are in a very early state of development. One might hope that string field
theory supersedes the (conceptually) cumbersome ‘first quantized’ formalism
which is still mostly used. However, string field theory is very complicated to
work with. With the notable exception of tachyon condensation, string field
theory has mainly been used to reproduce results obtained before in the ‘first
quantized’ approach.

Manifest background independence is certainly a desirable feature of any
theory of gravity. String theory is background independent, in the sense
that different on-shell backgrounds are different solutions of one underlying
theory. Formally, this is clear from the fact that deformations of on-shell
backgrounds correspond to marginal deformations of the world-sheet action,
which in turn are equivalent to inserting the vertex operator for a coherent
string state into correlators. However, background independence is not mani-
fest, as one needs to fix a reference background, or equivalently a world-sheet
conformal theory before being able to deform it. Therefore there is always an,
albeit conventional, cut between the space-time geometry (plus other back-
ground fields) and the dynamics in the background. Compared to approaches
to quantum gravity which focus on quantizing four-dimensional Einstein grav-
ity, string theory faces additional challenges. The various perturbative and
non-perturbative dualities clearly indicate that there is a huge redundancy be-
tween the consistent string backgrounds. In particular, since dualities mix the
gravitational with other degrees of freedom, one gets identifications between
space-time geometries with different topologies. The most prominent example
of this is mirror symmetry, which relates Calabi–Yau threefolds with oppo-
site Euler numbers (and reflected Hodge diamonds), and ‘second quantized
mirror symmetry’, which relates type-II string theory on certain Calabi–Yau
threefolds to the heterotic string on K3× T 2 (together with a certain choice
of gauge fields inside the K3-surface). While this appears to be a deep obser-
vation, what is lacking so far is a sufficiently abstract and general concept of
‘state’, which allows one to understand why these apparently different space-
times (amended with other background fields) represent the same state. One
closely related question is, what is the geometry underlying string theory?

Both quantum corrections, controlled by g and stringy corrections, con-
trolled by α′, have consequences for space-time geometry. Since dualities can
exchange quantum effects and stringy effects, both kinds of modifications are
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related, and the distinction between them depends on the ‘duality frame’ one
is using. So far, Calabi–Yau compactifications, in particular in the setting of
the topological string, have been the major playground for exploring ‘string
geometry’. More work needs to be done in this framework before address-
ing these questions within the full theory. Note that topological string theory
is rich enough to address issues such as background independence, quantum
space-time structure (‘space-time foam’), and the quest for a non-perturbative
formulation.

The problem of ‘string geometry’ can also be rephrased from another per-
spective, by highlighting the distinction between ‘geometrical backgrounds’
and ‘observed geometry’. Geometrical backgrounds are classical data, which
are used to define the world-sheet conformal field theory, while observed ge-
ometry is the geometry one infers by probing space with string or brane states.
This is illustrated by the example of strings in Minkowski space-time. While
Minkowski space-time does not have a minimal length scale, the shortest
length resolved by scattering string states is the string length

√
α′. Thus there

is a qualitative difference between the classical background used to define the
world-sheet theory, and the geometry ‘seen’ by strings. Things become more
complicated if we probe the same geometry using different objects. In par-
ticular, D-particles (D0-branes) resolve a different minimal length scale, the
11-dimensional Planck scale, which is related to the string length scale through
the vacuum expectation value of the dilaton. This again illustrates the high
redundancy in the description of observable quantities. What is needed here
is a disentanglement between observables and gauge symmetries. While all
this is ‘well known’ within the string community, and has been discussed in
several publications, a more focused effort might be needed to make progress
in these important conceptual questions.

The simplest consistent string backgrounds are ten-dimensional Minkowski
space, populated by either of the five supersymmetric perturbative string the-
ories, and 11-dimensional Minkowski space, for which only the massless sector
and the BPS states are known. This clearly presses the question why we live
in a four-dimensional universe. Moreover, even when taking the attitude to
impose that the additional space dimensions are unobservable at the presently
realizable energy scales, one still meets the problem that there is a huge num-
ber of ways to compactify the theory to four dimensions. This is, first of all,
a serious obstacle for testing the theory empirically based on its predictions.
And, second, it leaves us with the question whether the particular solution
which describes our universe (assuming that such a solution really exists) has
been chosen by a historical accident, or whether there is a dynamical expla-
nation. Since currently no convincing dynamical explanation is at hand, an
eloquent group within the string community advocates the use of the an-
thropic principle within the context of eternal inflation. Not surprisingly, this
move has provoked harsh criticism, which in its most pointed form discards
anthropic reasoning as being unscientific. Before commenting on the anthropic
principle, let us point out that it is not clear a priori which properties of our
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universe can be explained by recourse to laws and which properties are just
historical facts. This is, of course, closely related to the distinction between
‘equations’ and ‘initial conditions’ which is the key point of a famous essay
by E. Wigner. While for most branches of physics it is not controversial that
science explains ‘regularities among events’, while initial conditions are con-
tingent (true but not necessarily true), we nowadays tend to expect more
than this of quantum cosmology. However, the idea that a theory could dis-
pense itself from initial conditions, or could, in some sense, explain them,
might just be wrong. This said, we need to stress that there are alternatives
to anthropic considerations, which are worth exploring. As a matter of fact,
the present state of string theory does not allow us to study generic time-
dependent space-times in the full theory. Therefore the main problem with
anthropic reasoning is that it could prevent us from further developing the
theory. A moderate goal, which has been subject of some recent activity, is to
use effective fields theories, which incorporate some relevant stringy features,
to show that string vacua with rich spectra of light (compared to string or
Planck scale), stable, charged particles are preferred dynamically. Another,
more demanding question is why four large space-time dimensions should be
preferred. Ultimately, one needs to develop the formalism of string theory
beyond the framework of fixed background on-shell amplitudes before these
questions can be addressed properly.

11 Some Concluding Remarks

String theory has to a large extent been developed by exploring internal re-
quirements of consistency, often in a formal rather than mathematically rigor-
ous way. The underlying mathematical structure is very rich, and has lead to
very non-trivial predictions, insights, and developments, which in turn have
stimulated work by pure mathematicians and a vivid exchange of ideas be-
tween physicists and mathematicians. Some observations made in string the-
ory, such as mirror symmetry, have already been put on firm ground. Topo-
logical string theory, which is not only a toy version of string theory but
also a tool which allows to compute various quantities relevant for particle
phenomenology, is well understood perturbatively, while a non-perturbative
formulation is currently in the center of interest and might be within reach.
This supports the expectation that a mathematically satisfactory formulation
of the full string theory will be found eventually, although it is hard to esti-
mate how long this will take. While there are good indications that the theory
is consistent, its relevance for physics is less clear. Certainly, many ideas which
have grown out of string theory, notably the AdS/CFT correspondence and
the idea of extra dimensions, have had considerable influence on quantum field
theory, particle physics, and gravitational physics. While some of these ideas
are purely technical, like methods for the computation of amplitudes which are
now commonly used in QCD (helicity amplitudes), other ideas are conceptual.
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In particular, string theory makes it very natural to express physical phenom-
ena, including non-perturbative quantum phenomena in terms of geometry.
Two prominent examples are the geometrical realization of strong–weak cou-
pling dualities, as in the Seiberg–Witten solution of N = 2 gauge theories and
its lifts to type-II string theory and 11-dimensional M-theory, and the holo-
graphic renormalization group, where the energy scale of a four-dimensional
quantum field theory is literally treated as an extra dimension. But without
direct empirical evidence, string theory might just be a technical tool, or a
catalyser for ideas which one could also have developed independently. While
this would not necessarily be bad in the sense of invalidating the work done
in this field, most people working on string theory do certainly hope that it
captures fundamental features of space, time, and matter. Then, finding ways
of testing the theory through experiment or observation is indispensable.

From the perspective of the standard model one is eagerly waiting for ex-
perimental signatures which lead us beyond its domain of validity and, hope-
fully, indicate a particular type of extension. Whether signals of new physics
will give us clues about the relevance of string theory will strongly depend
on what kind of new physics will be found. Low-energy supersymmetry, with
a rich spectrum of supersymmetric particles, would certainly be very attrac-
tive for particle phenomenology. It would also fit with the idea that physics
at higher-energy scales is organized by higher symmetries, and would thus
indirectly support string theory as the ultimate form of unified theory. How-
ever, it would also indicate that string effects only become relevant at the
(four-dimensional) Planck scale, and then it will be very difficult to distill
direct evidence for string theory out of the data.

The situation would be much better in the alternative scenarios with ‘large’
(TeV-scale rather than Planck scale) extra dimensions. This would involve
gravity and it would also take us beyond the realm of renormalizable QFTs.
In this case new concepts, such as those offered by string theory, become
relevant already at the TeV scale.

Considerations of string theory have led to the discovery of very non-
trivial mathematical structures, which might hold key for formulating a unified
quantum theory of all interactions. This also gives confidence that there is a
mathematically consistent and physically relevant theory underlying all the
facets of what we today mean by string theory, whose complete fundamental
structure and symmetries are still to be uncovered.
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1 Introduction

Cosmology is going through a fruitful and exciting period. Some of the de-
velopments are definitely also of interest to physicists outside the fields of
astrophysics and cosmology.

This chapter covers some particularly fascinating and topical subjects. A
central theme will be the current evidence that the recent (z < 1) Universe is
dominated by an exotic nearly homogeneous dark energy density with negative
pressure. The simplest candidate for this unknown so-called dark energy is a
cosmological term in Einstein’s field equations, a possibility that has been
considered during all the history of relativistic cosmology. Independently of
what this exotic energy density is, one thing is certain since a long time:
The energy density belonging to the cosmological constant is not larger than
the cosmological critical density, and thus incredibly small by particle physics
standards. This is a profound mystery, since we expect that all sorts of vacuum
energies contribute to the effective cosmological constant.

Since this is such an important issue it should be of interest to indicate how
convincing the evidence for this finding really is, or whether one should remain
skeptical. Much of this is based on the observed temperature fluctuations of
the cosmic microwave background radiation (CMB), and large-scale structure
formation. The first evidence for an accelerating expansion of the Universe,
and still the only direct one, came from the Hubble diagram for Type Ia
supernovae. When combined with other measurements a cosmological world
model of the Friedmann–Lemâıtre variety has emerged that is spatially almost
flat, with about 70% of its energy contained in the form dark energy. A detailed
analysis of the existing data requires a considerable amount of theoretical
machinery that is beyond the scope of this contribution. For interested readers
we shall refer to some books, reviews, and articles that may be most convenient
to penetrate deeper into various topics.
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Since this book addresses mostly readers whose main interests are outside
astrophysics and cosmology, I do not presuppose a serious training in cos-
mology. However, I do assume some working knowledge of general relativity
(GR). As a source, and for references, I usually quote my recent textbook
[1]. The essentials of the Friedmann–Lemâıtre models will be summarized in
Appendices A and B. Appendix C provides a brief introduction to inflation,
a key idea of modern cosmology.

2 Einstein’s Original Motivation of the Λ-Term

One of the contributions in the famous book Albert Einstein: Philosopher–
Scientist [2] is a chapter by George E. Lemâıtre entitled “The Cosmological
Constant”. In the introduction he says: “The history of science provides many
instances of discoveries which have been made for reasons which are no longer
considered satisfactory. It may be that the discovery of the cosmological con-
stant is such a case.” When the book appeared in 1949 – at the occasion of
Einstein’s seventieth birthday – Lemâıtre could not be fully aware of how right
he was, how profound the cosmological constant problem really is, especially
since he was not a quantum physicist.

We begin this contribution in reviewing the main aspects of the history
of the Λ-term, from its introduction in 1917 up to the point when it became
widely clear that we are facing a deep mystery. (See also [3] and [4].) I describe
first the classical aspect of the historical development.

Einstein introduced the cosmological term when he applied GR the first
time to cosmology [5]. Presumably the main reason why Einstein turned so
soon after the completion of GR to cosmology had much to do with Machian
ideas on the origin of inertia, which played in those years an important role
in Einstein’s thinking. His intention was to eliminate all vestiges of absolute
space. He was, in particular, convinced that isolated masses cannot impose
a structure on space at infinity. Einstein was actually thinking about the
problem regarding the choice of boundary conditions at infinity already in
spring 1916. In a letter to Michele Besso on 14 May 1916 he also mentions
the possibility of the world being finite. A few months later he expanded on
this in letters to Willem de Sitter. It is along these lines that he postulated a
Universe that is spatially finite and closed, a Universe in which no boundary
conditions are needed. He then believed that this was the only way to satisfy
what he later [7] named Mach’s principle, in the sense that the metric field
should be determined uniquely by the energy-momentum tensor.

In addition, Einstein assumed that the Universe was static. This was not
unreasonable at the time, because the relative velocities of the stars as ob-
served were small. (Recall that astronomers only learned later that spiral neb-
ulae are independent star systems outside the Milky Way. This was definitely
established when in 1924 Hubble found that there were Cepheid variables in
Andromeda and also in other galaxies.)
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These two assumptions were, however, not compatible with Einstein’s
original field equations. For this reason, Einstein added the famous Λ-term,
which is compatible with the principles of GR, in particular with the energy–
momentum law ∇νT μν = 0 for matter. The modified field equations in stan-
dard notation and signature (−+ ++) are

Gμν = 8πGTμν − Λgμν . (1)

The cosmological term is, in four dimensions, the only possible complication
of the field equations if no higher than second-order derivatives of the metric
are allowed (Lovelock theorem). This remarkable uniqueness is one of the most
attractive features of GR. (In higher dimensions additional terms satisfying
this requirement are allowed.)

For the static Einstein universe the field equations (1) imply the two
relations

4πGρ =
1
a2

= Λ , (2)

where ρ is the mass density of the dust-filled universe (zero pressure) and a
is the radius of curvature. (We remark, in passing, that the Einstein universe
is the only static dust solution; one does not have to assume isotropy or
homogeneity. Its instability was demonstrated by Lemâıtre in 1927.) Einstein
was very pleased by this direct connection between the mass density and
geometry, because he thought that this was in accord with Mach’s philosophy.

Einstein concludes with the following sentences:

In order to arrive at this consistent view, we admittedly had to intro-
duce an extension of the field equations of gravitation which is not jus-
tified by our actual knowledge of gravitation. It has to be emphasized,
however, that a positive curvature of space is given by our results, even
if the supplementary term is not introduced. That term is necessary
only for the purpose of making possible a quasi-static distribution of
matter, as required by the fact of the small velocities of the stars.

To de Sitter, Einstein emphasized in a letter on 12 March 1917 that his
cosmological model was intended primarily to settle the question “whether
the basic idea of relativity can be followed through its completion, or whether
it leads to contradictions”. And he adds whether the model corresponds to
reality was another matter.

Only later Einstein came to realize that Mach’s philosophy is predicated
on an antiquated ontology that seeks to reduce the metric field to an epiphe-
nomenon of matter. It became increasingly clear to him that the metric field
has an independent existence, and his enthusiasm for what he called Mach’s
principle later decreased. In a letter to F. Pirani he wrote in 1954: “As a
matter of fact, one should no longer speak of Mach’s principle at all” [8]. GR
still preserves some remnant of Newton’s absolute space and time.
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3 From Static to Expanding World Models

Surprisingly to Einstein, de Sitter discovered in the same year, 1917, a com-
pletely different static cosmological model which also incorporated the cosmo-
logical constant, but was anti-Machian, because it contained no matter [9].
For this reason, Einstein tried to discard it on various grounds (more on this
below). The original form of the metric was

g = −
[

1− (
r

R
)2

]

dt2 +
dr2

1− ( rR )2
+ r2(dϑ2 + sin2 ϑdϕ2) .

Here, the spatial part is the standard metric of a three-sphere of radius R,
with R = (3/Λ)1/2. The model had one very interesting property: For light
sources moving along static worldlines there is a gravitational redshift, which
became known as the de Sitter effect. This was thought to have some bearing
on the redshift results obtained by Slipher. Because the fundamental (static)
worldlines in this model are not geodesic, a freely falling object released by
any static observer will be seen by him to accelerate away, generating also
local velocity (Doppler) redshifts corresponding to peculiar velocities. In the
second edition of his book [10], published in 1924, Eddington writes about
this

de Sitter’s theory gives a double explanation for this motion of reces-
sion; first there is a general tendency to scatter (...); second there is
a general displacement of spectral lines to the red in distant objects
owing to the slowing down of atomic vibrations (...), which would er-
roneously be interpreted as a motion of recession.

I do not want to enter into all the confusion over the de Sitter universe. One
source of this was the apparent singularity at r = R = (3/Λ)1/2. This was at
first thoroughly misunderstood even by Einstein and Weyl. (‘The Einstein–de
Sitter–Weyl–Klein Debate’ is now published in Vol. 8 of the Collected Papers
[6].) At the end, Einstein had to acknowledge that de Sitter’s solution is
fully regular and matter-free and thus indeed a counter example to Mach’s
principle. But he still discarded the solution as physically irrelevant because
it is not globally static. This is clearly expressed in a letter from Weyl to
Klein, after he had discussed the issue during a visit of Einstein in Zurich
[11]. An important discussion of the redshift of galaxies in de Sitter’s model
by H. Weyl in 1923 should be mentioned. Weyl introduced an expanding
version1 of the de Sitter model [12]. For small distances his result reduced to
what later became known as the Hubble law. Independently of Weyl, Cornelius
Lanczos introduced in 1922 also a non-stationary interpretation of de Sitter’s
solution in the form of a Friedmann spacetime with a positive spatial curvature

1 I recall that the de Sitter model has many different interpretations, depending on
the class of fundamental observers that is singled out.
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[13]. In a second paper he also derived the redshift for the non-stationary
interpretation [14].

Until about 1930 almost everybody believed that the Universe was static,
in spite of the two fundamental papers by Friedmann [15] in 1922 and 1924
and Lemâıtre’s independent work [16] in 1927. These path-breaking papers
were in fact largely ignored. The history of this early period has – as is of-
ten the case – been distorted by some widely read documents. Einstein too
accepted the idea of an expanding Universe only much later. After the first pa-
per of Friedmann, he published a brief note claiming an error in Friedmann’s
work; when it was pointed out to him that it was his error, Einstein pub-
lished a retraction of his comment, with a sentence that luckily was deleted
before publication: “[Friedmann’s paper] while mathematically correct is of no
physical significance”. In comments to Lemâıtre during the Solvay meeting in
1927, Einstein again rejected the expanding universe solutions as physically
unacceptable. According to Lemâıtre, Einstein was telling him, “Vos calculs
sont corrects, mais votre physique est abominable.” It appears astonishing that
Einstein – after having studied carefully Friedmann’s papers – did not real-
ize that his static model is unstable, and hence that the Universe has to be
expanding or contracting. On the other hand, I found in the archive of the
ETH many years ago a postcard of Einstein to Weyl from 1923, related to
Weyl’s reinterpretation of de Sitter’s solution, with the following interesting
sentence: “If there is no quasi-static world, then away with the cosmological
term.”

It also is not well known that Hubble interpreted his famous results on
the redshift of the radiation emitted by distant “nebulae” in the framework
of the de Sitter model, as was suggested by Eddington.

The general attitude is well illustrated by the following remark of Edding-
ton at a Royal Astronomical Society meeting in January 1930: “One puzzling
question is why there should be only two solutions. I suppose the trouble is
that people look for static solutions.”

Lemâıtre, who had been for a short time a post-doctoral student of Edding-
ton, read this remark in a report to the meeting published in Observatory,
and wrote to Eddington pointing out his 1927 paper. Eddington had seen
that paper, but had completely forgotten about it. But now he was greatly
impressed and recommended Lemâıtre’s work in a letter to Nature. He also
arranged for a translation which appeared in MNRAS [17]. Eddington also
“pointed out that it was immediately deducible from his [Lemâıtre’s] formu-
lae that Einstein’s world is unstable, so that an expanding or a contracting
universe is an inevitable result of Einstein’s law of gravitation.”

Lemâıtre’s successful explanation of Hubble’s discovery finally changed
the viewpoint of the majority of workers in the field. At this point, Einstein
rejected the cosmological term as superfluous and no longer justified [18]. At
the end of the paper, in which he published his new view, Einstein adds some
remarks about the age problem which was quite severe without the Λ-term,
since Hubble’s value of the Hubble parameter was then about seven times too
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large. Einstein is, however, not very worried and suggests two ways out. First
he says that the matter distribution is in reality inhomogeneous and that the
approximate treatment may be illusionary. Then he adds that in astronomy
one should be cautious with large extrapolations in time.

Einstein repeated his new standpoint also much later [19], and this was
adopted by many other influential workers, e.g. by Pauli [20]. Whether
Einstein really considered the introduction of the Λ-term as “the biggest blun-
der of his life” appears doubtful to me. In his published work and letters I
never found such a strong statement. Einstein discarded the cosmological term
just for simplicity reasons. For a minority of cosmologists (O. Heckmann, for
example [21]), this was not sufficient reason. Paraphrasing Rabi, one might
ask, “who ordered it away”?

Einstein published his new view in the Sitzungsberichte der Preussischen
Akademie der Wissenschaften. The correct citation is,

Einstein. A. (1931). Sitzungsber. Preuss. Akad. Wiss. 235–37.

Many authors have quoted this paper but never read it. As a result, the
quotations gradually changed in an interesting, quite systematic fashion. Some
steps are shown in the following sequence:

– A. Einstein. 1931. Sitzsber. Preuss. Akad. Wiss. ...
– A. Einstein. Sitzber. Preuss. Akad. Wiss. ... (1931)
– A. Einstein (1931). Sber. preuss. Akad. Wiss. ...
– Einstein. A .. 1931. Sb. Preuss. Akad. Wiss. ...
– A. Einstein. S.-B. Preuss. Akad. Wis. ...1931
– A. Einstein. S.B. Preuss. Akad. Wiss. (1931) ...
– Einstein, A., and Preuss, S.B. (1931). Akad. Wiss. 235

Presumably, one day some historian of science will try to find out what
happened with the young physicist S.B. Preuss, who apparently wrote just
one important paper and then disappeared from the scene.

After the Λ-force was rejected by its inventor, other cosmologists, like
Eddington, retained it. One major reason was that it solved the problem
of the age of the Universe when the Hubble time scale was thought to be
only 2 billion years (corresponding to the value H0 ∼ 500 km s−1Mpc−1 of
the Hubble constant). This was even shorter than the age of the Earth. In
addition, Eddington and others overestimated the age of stars and stellar
systems.

For this reason, the Λ-term was employed again and a model was revived
which Lemâıtre had singled out from the many solutions of the Friedmann–
Lemâıtre equations.2 This so-called “Lemâıtre hesitation universe” is closed
and has a repulsive Λ-force (Λ > 0), which is slightly greater than the value

2 I recall that Friedmann included the Λ-term in his basic equations. I find it
remarkable that for the negatively curved solutions he pointed out that these
may be open or compact (but not simply connected).
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chosen by Einstein. It begins with a big bang and has the following two stages
of expansion. In the first the Λ-force is not important, the expansion is deceler-
ated due to gravity and slowly approaches the radius of the Einstein universe.
At about the same time, the repulsion becomes stronger than gravity and
a second stage of expansion begins which eventually inflates. In this way a
positive Λ was employed to reconcile the expansion of the Universe with the
age of stars.

Repulsive Effect of a Positive Cosmological Constant

The repulsive effect of a positive cosmological constant can be seen from the
following consequence of Einstein’s field equations for the time-dependent
scale factor a(t) (see Appendix A):

ä = −4πG
3

(ρ+ 3p)a+
Λ

3
a , (3)

where p is the pressure of all forms of matter.
Historically, the Newtonian analog of the cosmological term was regarded

by Einstein, Weyl, Pauli, and others as a Yukawa term. This is not correct,
as I now show.

For a better understanding of the action of the Λ-term it may be helpful to
consider a general static spacetime with the metric (in adapted coordinates)

ds2 = −ϕ2dt2 + gikdxidxk , (4)

where ϕ and gik depend only on the spatial coordinates xi. The componentR00

of the Ricci tensor is given by R00 = Δ̄ϕ/ϕ, where Δ̄ is the three-dimensional
Laplace operator for the spatial metric gik in (4) (see, e.g., [1]). Let us write
(1) in the form

Gμν = κ(Tμν + TΛμν) (κ = 8πG) , (5)

with
TΛμν = − Λ

8πG
gμν . (6)

This has the form of the energy–momentum tensor of an ideal fluid, with
energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ.3 For an ideal fluid at
rest Einstein’s field equation implies

1
ϕ
Δ̄ϕ = 4πG

[

(ρ+ 3p) + (ρΛ + 3pΛ)
︸ ︷︷ ︸

−2ρΛ

]

. (7)

Since the energy density and the pressure appear in the combination ρ+ 3p,
we understand that a positive ρΛ leads to a repulsion (as in (3)). In the
3 This way of looking at the cosmological term was soon (in 1918) emphasized by

Schrödinger and also by F. Klein.
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Newtonian limit we have ϕ � 1 + φ (φ : Newtonian potential) and p � ρ,
hence we obtain the modified Poisson equation

Δφ = 4πG(ρ− 2ρΛ) . (8)

This is the correct Newtonian limit.
As a result of revised values of the Hubble parameter and the development

of the modern theory of stellar evolution in the 1950s, the controversy over
ages was resolved and the Λ-term became again unnecessary. (Some tension
remained for values of the Hubble parameter at the higher end of published
values.)

However, in 1967 it was revived again in order to explain why quasars ap-
peared to have redshifts that concentrated near the value z = 2. The idea was
that quasars were born in the hesitation era [22]. Then quasars at greatly dif-
ferent distances can have almost the same redshift, because the universe was
almost static during that period. Other arguments in favor of this interpreta-
tion were based on the following peculiarity. When the redshifts of emission
lines in quasar spectra exceed 1.95, then redshifts of absorption lines in the
same spectra were, as a rule, equal to 1.95. This was then quite understand-
able, because quasar light would most likely have crossed intervening galaxies
during the epoch of suspended expansion, which would result in almost iden-
tical redshifts of the absorption lines. However, with more observational data
evidence for the Λ-term dispersed for the third time.

4 The Mystery of the Λ-Problem

At this point I want to leave the classical discussion of the Λ-term, and turn
to the quantum aspect of the Λ-problem, where it really becomes very serious.

4.1 Historical Remarks

Since quantum physicists had so many other problems, it is not astonishing
that in the early years they did not worry about this subject. An exception
was Pauli, who wondered in the early 1920s whether the zero-point energy of
the radiation field could be gravitationally effective.

As background I recall that Planck had introduced the zero-point energy
with somewhat strange arguments in 1911. The physical role of the zero-point
energy was much discussed in the early years of quantum theory. There was,
for instance, a paper by Einstein and Stern in 1913 [Collected Papers, Vol. 4,
Doc. 11; see also the Editorial Note, p. 270] that aroused widespread interest.
In this, two arguments in favor of the zero-point energy were given. The first
had to do with the specific heat of rotating (diatomic) molecules. The authors
developed an approximate theory of the energy of rotating molecules and
came to the conclusion that the resulting specific heat agreed much better
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with recent experimental results by Arnold Eucken, if they included the zero-
point energy. The second argument was based on a new derivation of Planck’s
radiation formula. In both the arguments, Einstein and Stern made a number
of problematic assumptions, and in fall 1913, Einstein retracted their results.
At the second Solvay Congress in late October 1913, Einstein said that he no
longer believed in the zero-point energy, and in a letter to Ehrenfest [Vol. 5,
Doc. 481] he wrote that the zero-point energy was “dead as a doornail”.

From Charly Enz and Armin Thellung – Pauli’s last two assistants – I
have learned that Pauli had discussed this issue extensively with O. Stern
in Hamburg. Stern had calculated, but never published, the vapor pressure
difference between the isotopes 20 and 22 of Neon (using Debye theory). He
came to the conclusion that without zero-point energy this difference would
be large enough for easy separation of the isotopes, which is not the case
in reality. These considerations penetrated into Pauli’s lectures on statistical
mechanics [23] (which I attended). The theme was taken up in an article
by Enz and Thellung [24]. This was originally written as a birthday gift for
Pauli, but because of Pauli’s early death this appeared in a memorial volume
of Helv.Phys.Acta.

From Pauli’s discussions with Enz and Thellung we know that Pauli esti-
mated the influence of the zero-point energy of the radiation field – cutoff at
the classical electron radius – on the radius of the universe, and came to the
conclusion that it “could not even reach to the moon”.

When, as a student, I heard about this, I checked Pauli’s unpublished4

remark by doing the following little calculation (which Pauli must have done):
In units with � = c = 1 the vacuum energy density of the radiation field is

〈ρ〉vac =
8π

(2π)3

∫ ωmax

0

ω

2
ω2dω =

1
8π2

ω4
max ,

with
ωmax =

2π
λmax

=
2πme

α
.

The corresponding radius of the Einstein universe in (2) would then be (Mpl ≡
1/
√
G)

a =
α2

(2π)
2
3

Mpl

me

1
me
∼ 31 km .

This is indeed less than the distance to the moon. (It would be more consistent
to use the curvature radius of the static de Sitter solution; the result is the
same, up to the factor

√

3/2.)
For decades nobody else seems to have worried about contributions of

quantum fluctuations to the cosmological constant, although physicists

4 A trace of this is in Pauli’s Handbuch article [25] on wave mechanics in the section
where he discusses the meaning of the zero-point energy of the quantized radiation
field.
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learned after Dirac’s hole theory that the vacuum state in quantum field theory
is not an empty medium, but has interesting physical properties. As an impor-
tant example I mention the papers by Heisenberg and Euler [26] in which they
calculated the modifications of Maxwell’s equations due to the polarization of
the vacuum. Shortly afterward, Weisskopf [27] not only simplified their calcu-
lations but also gave a thorough discussion of the physics involved in charge
renormalization. Weisskopf related the modification of Maxwell’s Lagrangian
to the change of the energy of the Dirac sea as a function of slowly varying
external electromagnetic fields. (Avoiding the old-fashioned Dirac sea, this ef-
fective Lagrangian is due to the interaction of a classical electromagnetic field
with the vacuum fluctuations of the electron positron field.) After a charge
renormalization this change is finite and gives rise to electric and magnetic po-
larization vectors of the vacuum. In particular, the refraction index for light
propagating perpendicular to a static homogeneous magnetic field depends
on the polarization direction. This is the vacuum analog of the well-known
Cotton–Mouton effect in optics. As a result, an initially linearly polarized light
beam becomes elliptic. (In spite of great efforts it has not yet been possible
to observe this effect.)

Another beautiful example for the importance of vacuum energies as a
function of varying external conditions is the Casimir effect. This is the most
widely cited example of how vacuum fluctuations can have observable conse-
quences.

The presence of conducting plates modifies the vacuum energy density in
a manner which depends on the separation of the plates. This leads to an
attractive force between the two plates.

Historically, this was a byproduct of some applied industrial research in
the stability of colloidal suspensions used to deposit films in the manufacture
of lamps and cathode tubes. This lead Casimir and Polder to reconsider the
theory of van der Waals interaction with retardation included. They found
that this causes the interaction to vary at large intermolecular separations
as r−7. Casimir mentioned his result to Niels Bohr during a walk, and told
him that he was puzzled by the extreme simplicity of the result at large
distance. According to Casimir, Bohr mumbled something about zero-point
energy. That was all, but it put him on the right track.

Precision experiments have recently confirmed the theoretical prediction
to about 1%. By now the literature related to the Casimir effect is enormous.
For further information we refer to the recent book [28].

4.2 Has Dark Energy been Discovered in the Lab?

It has been suggested by Beck and Mackey [29] that part of the zero-point en-
ergy of the radiation field that is gravitationally active can be determined from
noise measurements of Josephson junctions. This caused some widespread at-
tention. In a reaction we [30] showed that there is no basis for this claim,
by following the reasoning in [29] for a much simpler model, for which it is
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very obvious that the authors misinterpreted their formulae. Quite generally,
the absolute value of the zero-point energy of a quantum mechanical system
has no physical meaning when gravitational coupling is ignored. All that is
measurable are changes of the zero-point energy under variations of system
parameters or of external couplings, like an applied voltage. For further infor-
mation on the controversy, see [31] and [32].

4.3 Vacuum Energy and Gravity

When we consider the coupling to gravity, the vacuum energy density acts
like a cosmological constant. In order to see this, first consider the vacuum
expectation value of the energy–momentum tensor in Minkowski spacetime.
Since the vacuum state is Lorentz invariant, this expectation value is an invari-
ant symmetric tensor, hence proportional to the metric tensor. For a curved
metric this is still the case, up to higher curvature terms:

〈Tμν〉vac = −gμνρvac + higher curvature terms . (9)

The effective cosmological constant, which controls the large-scale behavior of
the Universe, is given by

Λ = 8πGρvac + Λ0 , (10)

where Λ0 is a bare cosmological constant in Einstein’s field equations.
We know from astronomical observations that ρΛ ≡ Λ/8πG cannot be

larger than about the critical density:

ρcrit =
3H2

0

8πG
= 1.88× 10−29h2

0gcm
−3 (11)

� (3× 10−3eV )4 ,

where h0 is the reduced Hubble parameter

h0 = H0/(100kms−1Mpc−1) (12)

that is close to 0.7.
It is a complete mystery as to why the two terms in (10) should almost

exactly cancel. This is – more precisely stated – the famous Λ-problem.
As far as I know, the first who came back to possible contributions of the

vacuum energy density to the cosmological constant was Zel’dovich. He dis-
cussed this issue in two papers [33] during the third renaissance period of the
Λ-term, but before the advent of spontaneously broken gauge theories. The
following remark by him is particularly interesting. Even if one assumes com-
pletely ad hoc that the zero-point contributions to the vacuum energy density
are exactly cancelled by a bare term, there still remain higher-order effects.
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In particular, gravitational interactions between the particles in the vacuum
fluctuations are expected on dimensional grounds to lead to a gravitational
self-energy density of order Gμ6, where μ is some cutoff scale. Even for μ as
low as 1 GeV (for no good reason) this is about 9 orders of magnitude larger
than the observational bound.

This illustrates that there is something profound that we do not under-
stand at all, certainly not in quantum field theory (so far also not in string the-
ory). We are unable to calculate the vacuum energy density in quantum field
theories, like the standard model of particle physics. But we can attempt to
make what appear to be reasonable order-of-magnitude estimates for the var-
ious contributions. All expectations are in gigantic conflict with the facts (see
below). Trying to arrange the cosmological constant to be zero is unnatural in
a technical sense. It is like enforcing a particle to be massless, by fine-tuning
the parameters of the theory when there is no symmetry principle which im-
plies a vanishing mass. The vacuum energy density is unprotected from large
quantum corrections. This problem is particularly severe in field theories with
spontaneous symmetry breaking. In such models there are usually several pos-
sible vacuum states with different energy densities. Furthermore, the energy
density is determined by what is called the effective potential, and this is a
dynamical object. Nobody can see any reason why the vacuum of the standard
model we ended up as the Universe cooled has – for particle physics standards
– an almost vanishing energy density. Most probably, we will only have a sat-
isfactory answer once we shall have a theory which successfully combines the
concepts and laws of GR about gravity and spacetime structure with those of
quantum theory.

4.4 Simple Estimates of Vacuum Energy Contributions

If we take into account the contributions to the vacuum energy from vacuum
fluctuations in the fields of the standard model up to the currently explored
energy, i.e., about the electroweak scale MF = G

−1/2
F ≈ 300GeV (GF : Fermi

coupling constant), we cannot expect an almost complete cancellation, be-
cause there is no symmetry principle in this energy range that could require
this. The only symmetry principle which would imply this is supersymmetry,
but supersymmetry is broken (if it is realized in nature). Hence we can at
best expect a very imperfect cancellation below the electroweak scale, leaving
a contribution of the order of M4

F . (The contributions at higher energies may
largely cancel if supersymmetry holds in the real world.)

We would reasonably expect that the vacuum energy density is at least
as large as the condensation energy density of the QCD phase transition
to the broken phase of chiral symmetry. Already this is far too large:
∼ Λ4

QCD/16π2 ∼ 10−4GeV4; this is more than 40 orders of magnitude larger
than ρcrit. Beside the formation of quark condensates < q̄q > in the QCD vac-
uum which break chirality, one also expects a gluon condensate < Gμνa Gaμν >
∼ Λ4

QCD. This produces a significant vacuum energy density as a result
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of a dilatation anomaly: If Θμμ denotes the “classical” trace of the energy–
momentum tensor, we have [34]

T μμ = Θμμ −
β(gs)
2gs

Gμνa Gaμν , (13)

where the second term is the QCD piece of the trace anomaly. β(gs) is the β-
function of QCD that determines the running of the strong coupling constant
gs (see the contribution of Dosch to this book). I recall that this anomaly arises
because a scale transformation is no more a symmetry if quantum corrections
are included. Taking the vacuum expectation value of (13), we would again
naively expect that < Θμμ > is of the order M4

F . Even if this should vanish
for some unknown reason, the anomalous piece is cosmologically gigantic. The
expectation value < Gμνa Gaμν > can be estimated with QCD sum rules [35],
and gives

< T μμ >
anom∼ −(350MeV )4 , (14)

about 45 orders of magnitude larger than ρcrit. This reasoning should show
convincingly that the cosmological constant problem is indeed a profound one.
(Note that there is some analogy with the (much milder) strong CP problem
of QCD. However, in contrast to the Λ-problem, Peccei and Quinn [36] have
shown that in this case there is a way to resolve the conundrum.)

Let us also have a look at the Higgs condensate of the electroweak theory.
Recall that in the standard model we have for the Higgs doublet Φ in the
broken phase for < Φ∗Φ >≡ 1

2φ
2 the potential

V (φ) = −1
2
m2φ2 +

λ

8
φ4 . (15)

Setting as usual φ = v+H , where v is the value of φ where V has its minimum,

v =

√

2m2

λ
= 2−1/4G

−1/2
F ∼ 246GeV , (16)

we find that the Higgs mass is related to λ by λ = M2
H/v

2. For φ = v we
obtain the energy density of the Higgs condensate

V (φ = v) = −m
4

2λ
= − 1

8
√

2
M2
FM

2
H = O(M4

F ) . (17)

We can, of course, add a constant V0 to the potential (15) such that it cancels
the Higgs vacuum energy in the broken phase – including higher-order correc-
tions. This again requires an extreme fine tuning. A remainder of only O(m4

e),
say, would be catastrophic. This remark is also highly relevant for models of
inflation and quintessence.
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In attempts beyond the standard model the vacuum energy problem so
far remains, and often becomes even worse. For instance, in supergravity the-
ories with spontaneously broken supersymmetry there is the following simple
relation between the gravitino mass mg and the vacuum energy density

ρvac =
3

8πG
m2
g .

Comparing this with (11) we find

ρvac
ρcrit

� 10122
( mg

mPl

)2

.

Even for mg ∼ 1 eV this ratio becomes 1066. (mg is related to the pa-
rameter F characterizing the strength of the supersymmetry breaking by
mg = (4πG/3)1/2F , so mg ∼ 1 eV corresponds to F 1/2 ∼ 100 TeV .)

Also string theory has not yet offered convincing clues why the cosmo-
logical constant is so extremely small. The main reason is that a low energy
mechanism is required, and since supersymmetry is broken, one again expects
a magnitude of order M4

F , which is at least 50 orders of magnitude too large
(see also [37]). However, non-supersymmetric physics in string theory is at
the very beginning and workers in the field hope that further progress might
eventually lead to an understanding of the cosmological constant problem.

I hope I have convinced the reader that we are indeed facing a profound
mystery. (For other recent reviews, see also [38–41]. These contain more ex-
tended lists of references.)

5 Luminosity–Redshift Relation for Type Ia Supernovae

A few years ago the Hubble diagram for Type Ia supernovae gave, as a big
surprise, the first serious evidence for a currently accelerating Universe. Before
presenting and discussing critically these exciting results, we develop on the
basis of Appendix A some theoretical background.

5.1 Theoretical Redshift–Luminosity Relation

In cosmology several different distance measures are in use, which are all
related by simple redshift factors (see Sect. A.4). The one which is relevant in
this section is the luminosity distance DL. We recall that this is defined by

DL = (L/4πF)1/2 , (18)

where L is the intrinsic luminosity of the source and F the observed en-
ergy flux.
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We want to express this in terms of the redshift z of the source and some
of the cosmological parameters. If the comoving radial coordinate r is chosen
such that the Friedmann–Lemâıtre metric takes the form

g = −dt2 + a2(t)
[

dr2

1− kr2 + r2dΩ2

]

, k = 0,±1 , (19)

then we have
Fdt0 = Ldte · 1

1 + z
· 1
4π(rea(t0))2

.

The second factor on the right is due to the redshift of the photon energy;
the indices 0, e refer to the present and emission times, respectively. Using
also 1 + z = a(t0)/a(te), we find in a first step:

DL(z) = a0(1 + z)r(z) (a0 ≡ a(t0)) . (20)

We need the function r(z). From

dz = −a0

a

ȧ

a
dt , dt = −a(t) dr√

1− kr2
for light rays, we see that

dr√
1− kr2 =

1
a0

dz

H(z)
(H(z) =

ȧ

a
) . (21)

Now, we make use of the Friedmann equation

H2 +
k

a2
=

8πG
3
ρ . (22)

Let us decompose the total energy–mass density ρ into non-relativistic (NR),
relativistic (R), Λ, quintessence (Q), and possibly other contributions

ρ = ρNR + ρR + ρΛ + ρQ + · · · . (23)

For the relevant cosmic period we can assume that the “energy equation”

d

da
(ρa3) = −3pa2 (24)

also holds for the individual components X = NR,R,Λ,Q, · · · . If wX ≡
pX/ρX is constant, this implies that

ρXa
3(1+wX ) = const . (25)

Therefore,

ρ =
∑

X

(

ρXa
3(1+wX )

)

0

1
a3(1+wX )

=
∑

X

(ρX)0(1 + z)3(1+wX) . (26)
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Hence the Friedmann equation (22) can be written as

H2(z)
H2

0

+
k

H2
0a

2
0

(1 + z)2 =
∑

X

ΩX(1 + z)3(1+wX) , (27)

where ΩX is the dimensionless density parameter for the species X ,

ΩX =
(ρX)0
ρcrit

, (28)

where ρcrit is the critical density:

ρcrit =
3H2

0

8πG
= 1.88× 10−29 h2

0 g cm−3 (29)
= 8× 10−47h2

0 GeV 4 .

Here h0 denotes the reduced Hubble parameter

h0 = H0/(100 km s−1 Mpc−1) � 0.7 . (30)

Using also the curvature parameter ΩK ≡ −k/H2
0a

2
0, we obtain the useful

form
H2(z) = H2

0E
2(z;ΩK , ΩX) , (31)

with
E2(z;ΩK , ΩX) = ΩK(1 + z)2 +

∑

X

ΩX(1 + z)3(1+wX) . (32)

Especially for z = 0 this gives

ΩK +Ω0 = 1, Ω0 ≡
∑

X

ΩX . (33)

If we use (31) in (21), we get

∫ r(z)

0

dr√
1− kr2 =

1
H0a0

∫ z

0

dz′

E(z′)
(34)

and thus
r(z) = S(χ(z)) , (35)

where

χ(z) =
1

H0a0

∫ z

0

dz′

E(z′)
(36)

and

S(χ) =

⎧

⎨

⎩

sinχ : k = 1
χ : k = 0

sinhχ : k = 1 .
(37)
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Inserting this in (20) gives finally the relation we were looking for

DL(z) =
1
H0
DL(z;ΩK , ΩX) , (38)

with

DL(z;ΩK , ΩX) = (1 + z)
1

|ΩK |1/2S
(

|ΩK |1/2
∫ z

0

dz′

E(z′)

)

(39)

for k = ±1. For a flat universe, ΩK = 0 or equivalently Ω0 = 1, the “Hubble-
constant-free” luminosity distance is

DL(z) = (1 + z)
∫ z

0

dz′

E(z′)
. (40)

Astronomers use as logarithmic measures of L and F the absolute and
apparent magnitudes,5 denoted by M and m, respectively. The conventions
are chosen such that the distance modulus m−M is related to DL as follows

m−M = 5 log
(

DL
1 Mpc

)

+ 25 . (41)

Inserting the representation (38), we obtain the following relation between the
apparent magnitude m and the redshift z:

m =M+ 5 logDL(z;ΩK , ΩX) , (42)

where, for our purpose, M = M − 5 logH0 + 25 is an uninteresting fit pa-
rameter. The comparison of this theoretical magnitude redshift relation with
data will lead to interesting restrictions for the cosmological Ω-parameters.
In practice often only ΩM and ΩΛ are kept as independent parameters, where
from now on the subscript M denotes (as in most papers) non-relativistic
matter.

The following remark about degeneracy curves in the Ω-plane is important
in this context. For a fixed z in the presently explored interval, the contours
defined by the equations DL(z;ΩM , ΩΛ) = const have little curvature, and
thus we can associate an approximate slope to them. For z = 0.4 the slope is
about 1 and increases to 1.5-2 by z = 0.8 over the interesting range of ΩM and
ΩΛ. Hence even quite accurate data can at best select a strip in the Ω-plane,
with a slope in the range just discussed. This is the reason behind the shape
of the likelihood regions shown later (Fig. 2).

In this context it is also interesting to determine the dependence of the
deceleration parameter

q0 = −
(aä

ȧ2

)

0
(43)

5 Beside the (bolometric) magnitudes m,M , astronomers also use magnitudes
mB, mV , . . . referring to certain wavelength bands B (blue), V (visual), and
so on.
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on ΩM and ΩΛ. At an any cosmic time we obtain from (107) and (26)

− äa
ȧ2

=
1
2

1
E2(z)

∑

X

ΩX(1 + z)3(1+wX)(1 + 3wX) . (44)

For z = 0 this gives

q0 =
1
2

∑

X

ΩX(1 + 3wX) =
1
2
(ΩM − 2ΩΛ + · · · ) . (45)

The line q0 = 0 (ΩΛ = ΩM/2) separates decelerating from accelerating uni-
verses at the present time. For given values of ΩM , ΩΛ, etc., (44) vanishes for
z determined by

ΩM (1 + z)3 − 2ΩΛ + · · · = 0 . (46)

This equation gives the redshift at which the deceleration period ends (coast-
ing redshift).

Generalization for Dynamical Models of Dark Energy

If the vacuum energy constitutes the missing two-thirds of the average energy
density of the present Universe, we would be confronted with the following
cosmic coincidence problem: Since the vacuum energy density is constant in
time – at least after the QCD phase transition – while the matter energy
density decreases as the Universe expands, it would be more than surprising
if the two are comparable just at about the present time, while their ratio was
tiny in the early Universe and would become very large in the distant future.
The goal of dynamical models of dark energy is to avoid such an extreme fine-
tuning. The ratio p/ρ of this component then becomes a function of redshift,
which we denote by wQ(z) (because the so-called “quintessence models” are
particular examples). Then the function E(z) in (32) gets modified.

To see how, we start from the energy equation (24) and write this as

d ln(ρQa3)
d ln(1 + z)

= 3wQ .

This gives

ρQ(z) = ρQ0(1 + z)3 exp

(

∫ ln(1+z)

0

3wQ(z′)d ln(1 + z′)

)

or

ρQ(z) = ρQ0 exp

(

3
∫ ln(1+z)

0

(1 + wQ(z′))d ln(1 + z′)

)

. (47)
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Hence, we have to perform on the right of (32) the following substitution:

ΩQ(1 + z)3(1+wQ) → ΩQ exp

(

3
∫ ln(1+z)

0

(1 + wQ(z′))d ln(1 + z′)

)

. (48)

As indicated above, a much discussed class of dynamical models for dark
energy are quintessence models. In many ways people thereby repeat what
has been done in inflationary cosmology. The main motivation there was (see
Appendix C) to avoid excessive fine tunings of standard big bang cosmology
(horizon and flatness problems). In Appendix D we give a brief discussion
of this class of models. It has to be emphasized, however, that quintessence
models do not solve the vacuum energy problem, so far also not the coincidence
puzzle.

5.2 Type Ia Supernovas as Standard Candles

It has long been recognized that supernovas of type Ia are excellent standard
candles and are visible to cosmic distances [42] (the record is at present at
a redshift of about 1.7). At relatively closed distances they can be used to
measure the Hubble constant, by calibrating the absolute magnitude of nearby
supernovas with various distance determinations (e.g., Cepheids). There is still
some dispute over these calibration resulting in differences of about 10% for
H0. (For recent papers and references, see [43].)

In 1979, Tammann [44] and Colgate [45] independently suggested that at
higher redshifts this subclass of supernovas can be used to determine also the
deceleration parameter. In recent years this program became feasible, thanks
to the development of new technologies which made it possible to obtain
digital images of faint objects over sizable angular scales, and by making use
of big telescopes such as Hubble and Keck.

There are two major teams investigating high-redshift SNe Ia, namely the
“Supernova Cosmology Project” (SCP) and the “High-Z Supernova search
Team” (HZT). Each team has found a large number of SNe, and both groups
have published almost identical results. (For up-to-date information, see the
home pages [46] and [47].)

Before discussing the most recent results, a few remarks about the na-
ture and properties of type Ia SNe should be made. Observationally, they are
characterized by the absence of hydrogen in their spectra, and the presence of
some strong silicon lines near maximum. The immediate progenitors are most
probably carbon–oxygen white dwarfs in close binary systems, but it must be
said that these have not yet been clearly identified.6

In the standard scenario a white dwarf accretes matter from a non-
degenerate companion until it approaches the critical Chandrasekhar mass

6 This is perhaps not so astonishing, because the progenitors are presumably faint
compact dwarf stars.
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and ignites carbon burning deep in its interior of highly degenerate matter.
This is followed by an outward-propagating nuclear flame leading to a to-
tal disruption of the white dwarf. Within a few seconds the star is converted
largely into nickel and iron. The dispersed nickel radioactively decays to cobalt
and then to iron in a few hundred days. A lot of effort has been invested to
simulate these complicated processes. Clearly, the physics of thermonuclear
runaway burning in degenerate matter is complex. In particular, since the
thermonuclear combustion is highly turbulent, multidimensional simulations
are required. This is an important subject of current research. (One gets a
good impression of the present status from several articles in [48]. See also
the review [49].) The theoretical uncertainties are such that, for instance,
predictions for possible evolutionary changes are not reliable.

It is conceivable that in some cases a type Ia supernova is the result of
a merging of two carbon–oxygen-rich white dwarfs with a combined mass
surpassing the Chandrasekhar limit. Theoretical modeling indicates, however,
that such a merging would lead to a collapse, rather than an SN Ia explosion.
But this issue is still debated.

In view of the complex physics involved, it is not astonishing that type Ia
supernovas are not perfect standard candles. Their peak absolute magnitudes
have a dispersion of 0.3–0.5 mag, depending on the sample. Astronomers have,
however, learned in recent years to reduce this dispersion by making use of
empirical correlations between the absolute peak luminosity and light curve
shapes. Examination of nearby SNe showed that the peak brightness is corre-
lated with the time scale of their brightening and fading: slow decliners tend
to be brighter than rapid ones. There are also some correlations with spectral
properties. Using these correlations it became possible to reduce the remaining
intrinsic dispersion, at least in the average, to � 0.15 mag. (For the various
methods in use, and how they compare, see [50, 56], and references therein.)
Other corrections, such as Galactic extinction, have been applied, resulting
for each supernova in a corrected (rest-frame) magnitude. The redshift depen-
dence of this quantity is compared with the theoretical expectation given by
(41) and (39).

5.3 Results

After the classic papers [51–53] on the Hubble diagram for high-redshift type
Ia supernovas, published by the SCP and HZT teams, significant progress
has been made (for reviews, see [54] and [55]). I discuss first the main results
presented in [56]. These are based on additional new data for z > 1, obtained
in conjunction with the Great Observatories Origins Deep Survey (GOODS)
Treasury program, conducted with the Advanced Camera for Surveys (ACS)
aboard the Hubble Space Telescope (HST).

The quality of the data and some of the main results of the analysis are
shown in Fig. 1. The data points in the top panel are the distance moduli rela-
tive to an empty uniformly expanding universe, Δ(m−M), and the redshifts



Dark Energy 347

high-z gray dust (+ΩM=1.0)

ΩM=1.0, ΩΛ=0.0

Empty (Ω=0)
ΩM=0.27, ΩΛ=0.73

"replenishing" gray dust

Δ 
(m

-M
) 

(m
ag

)
Δ 

(m
-M

) 
(m

ag
)

-0.5

0
0

0.5

0

-1.0

0.5

0

-0.5

1.0

0.5 1.0 1.5 2.0
z

Evolution ~ z, (+ΩM=1.0)

Ground Discovered
HST Discovered

Fig. 1. Distance moduli relative to an empty uniformly expanding universe (residual
Hubble diagram) for SNe Ia; see text for further explanations (Adapted from [56],
Fig. 7.)

of a “gold” set of 157 SNe Ia. In this “reduced” Hubble diagram the filled
symbols are the HST-discovered SNe Ia. The bottom panel shows weighted
averages in fixed redshift bins.

These data are consistent with the “cosmic concordance” model (ΩM =
0.3, ΩΛ = 0.7), with χ2

dof = 1.06. For a flat universe with a cosmological
constant, the fit gives ΩM = 0.29±0.13

0.19 (equivalently, ΩΛ = 0.71). The other
model curves will be discussed below. Likelihood regions in the (ΩM , ΩΛ)-
plane, keeping only these parameters in (39) and averaging H0, are shown in
Fig. 2. To demonstrate the progress, old results from 1998 are also included. It
will turn out that this information is largely complementary to the restrictions
we shall obtain from the CMB anisotropies.

In the meantime new results have been published. Perhaps the best high-z
SN Ia compilation to date are the results from the Supernova Legacy Survey
(SNLS) of the first year [57]. The other main research group has also published
new data at about the same time [58].

5.4 Systematic Uncertainties

Possible systematic uncertainties due to astrophysical effects have been dis-
cussed extensively in the literature. The most serious ones are (i) dimming by
intergalactic dust, and (ii) evolution of SNe Ia over cosmic time, due to changes
in progenitor mass, metallicity, and C/O ratio. I discuss these concerns only
briefly (see also [54, 56]).
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Concerning extinction, detailed studies show that high-redshift SN Ia suffer
little reddening; their B-V colors at maximum brightness are normal. How-
ever, it can a priori not be excluded that we see distant SNe through a grey
dust with grain sizes large enough as to not imprint the reddening signature
of typical interstellar extinction. One argument against this hypothesis is that
this would also imply a larger dispersion than is observed. In Fig. 1 the expec-
tation of a simple grey dust model is also shown. The new high-redshift data
reject this monotonic model of astrophysical dimming. Equation (46) shows
that at redshifts z ≥ (2ΩΛ/ΩM )1/3 − 1 � 1.2 the Universe is decelerating,
and this provides an almost unambiguous signature for Λ, or some effective
equivalent. There is now strong evidence for a transition from a deceleration
to acceleration at a redshift z = 0.46± 0.13.

The same data provide also some evidence against a simple luminosity evo-
lution that could mimic an accelerating Universe. Other empirical constraints
are obtained by comparing subsamples of low-redshift SN Ia believed to arise
from old and young progenitors. It turns out that there is no difference within
the measuring errors, after the correction based on the light-curve shape has
been applied. Moreover, spectra of high-redshift SNe appear remarkably sim-
ilar to those at low redshift. This is very reassuring. On the other hand, there
seems to be a trend that more distant supernovas are bluer. It would, of
course, be helpful if evolution could be predicted theoretically, but in view of
what has been said earlier, this is not (yet) possible.
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In conclusion, none of the investigated systematic errors appear to recon-
cile the data with ΩΛ = 0 and q0 ≥ 0. But further work is necessary before
we can declare this as a really established fact.

To improve the observational situation a satellite mission called SNAP
(“Supernovas Acceleration Probe”) has been proposed [59]. According to the
plans this satellite would observe about 2000 SNe within a year and much more
detailed studies could then be performed. For the time being some scepticism
with regard to the results that have been obtained is still not out of place,
but the situation is steadily improving.

Finally, I mention a more theoretical complication. In the analysis of the
data the luminosity distance for an ideal Friedmann universe was always used.
But the data were taken in the real inhomogeneous Universe. This may per-
haps not be good enough, especially for high-redshift standard candles. The
simplest way to take this into account is to introduce a filling parameter
which, roughly speaking, represents matter that exists in galaxies but not in
the intergalactic medium. For a constant filling parameter one can determine
the luminosity distance by solving the Dyer–Roeder equation. But now one
has an additional parameter in fitting the data. For a flat universe this was
investigated in [60]. We shall come back to this issue in Sect. 8.2.

6 Microwave Background Anisotropies

Investigations of the cosmic microwave background have presumably con-
tributed most to the remarkable progress in cosmology during recent years
(For a review, see [61]). Beside its spectrum, which is Planckian to an incred-
ible degree, we also can study the temperature fluctuations over the “cosmic
photosphere” at a redshift z ≈ 1100. Through these we get access to crucial
cosmological information (primordial density spectrum, cosmological param-
eters, etc.). A major reason for why this is possible relies on the fortunate
circumstance that the fluctuations are tiny (∼ 10−5) at the time of recombi-
nation. This allows us to treat the deviations from homogeneity and isotropy
for an extended period of time perturbatively, i.e., by linearizing the Einstein
and matter equations about solutions of the idealized Friedmann–Lemâıtre
models. Since the physics is effectively linear, we can accurately work out the
evolution of the perturbations during the early phases of the Universe, given
a set of cosmological parameters. Confronting this with observations tells us
a lot about the cosmological parameters as well as the initial conditions, and
thus about the physics of the very early Universe. Through this window to
the earliest phases of cosmic evolution we can, for instance, test general ideas
and specific models of inflation.

6.1 Qualitative Remarks

Let me begin with some qualitative remarks, before I go into more technical
details. Long before recombination (at temperatures T > 6000 K, say) pho-
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tons, electrons, and baryons were so strongly coupled that these components
may be treated together as a single fluid. In addition to this there is also
a dark matter component. For all practical purposes the two interact only
gravitationally. The investigation of such a two-component fluid for small de-
viations from an idealized Friedmann behavior is a well-studied application of
cosmological perturbation theory (see, e.g., [63]).

At a later stage, when decoupling is approached, this approximate treat-
ment breaks down because the mean free path of the photons becomes longer
(and finally “infinite” after recombination). While the electrons and baryons
can still be treated as a single fluid, the photons and their coupling to the
electrons have to be described by the general relativistic Boltzmann equation.
The latter is, of course, again linearized about the idealized Friedmann solu-
tion. Together with the linearized fluid equations (for baryons and cold dark
matter, say) and the linearized Einstein equations one arrives at a complete
system of equations for the various perturbation amplitudes of the metric and
matter variables. There exist widely used codes, e.g. CMBFAST [62], that
provide the CMB anisotropies – for given initial conditions – to a precision of
about 1%. A lot of qualitative and semi-quantitative insight into the relevant
physics can, however, be gained by looking at various approximations of the
basic dynamical system.

Let us first discuss the temperature fluctuations. What is observed is the
temperature autocorrelation:

C(ϑ) :=
〈

ΔT (n)
T

· ΔT (n′)
T

〉

=
∞
∑

l=2

2l + 1
4π

ClPl(cosϑ) , (49)

where ϑ is the angle between the two directions of observation n,n′, and
the average is taken ideally over all sky. The angular power spectrum is by
definition l(l+1)

2π Cl versus l (ϑ � π/l).
A characteristic scale, which is reflected in the observed CMB anisotropies,

is the sound horizon at last scattering, i.e., the distance over which a pres-
sure wave can propagate until decoupling. This can be computed within the
unperturbed model and subtends about half a degree on the sky for typical
cosmological parameters. For scales larger than this sound horizon the fluctu-
ations have been laid down in the very early Universe. These have been de-
tected by the COBE satellite. The (gauge invariant brightness) temperature
perturbation Θ = ΔT/T is dominated by the combination of the intrinsic
temperature fluctuations and gravitational redshift or blueshift effects. For
example, photons that have to climb out of potential wells for high-density
regions are redshifted. One can show that these effects combine for adiabatic
initial conditions to 1

3Ψ , where Ψ is one of the two gravitational Bardeen po-
tentials. The latter, in turn, is directly related to the density perturbations.
For scale-free initial perturbations and almost vanishing spatial curvature the
corresponding angular power spectrum of the temperature fluctuations turns
out to be nearly flat (Sachs–Wolfe plateau in Fig. 3).
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On the other hand, inside the sound horizon before decoupling, acous-
tic, Doppler, gravitational redshift, and photon diffusion effects combine to
the spectrum of small angle anisotropies shown in Fig. 3. These result from
gravitationally driven synchronized acoustic oscillations of the photon–baryon
fluid, which are damped by photon diffusion.

A particular realization of Θ(n), such as the one accessible to us (all sky
map from our location), cannot be predicted. Theoretically, Θ is a random
field Θ(x, η,n), depending on the conformal time η, the spatial coordinates,
and the observing direction n. Its correlation functions should be rotationally
invariant in n, and respect the symmetries of the background time slices. If
we expand Θ in terms of spherical harmonics,

Θ(n) =
∑

lm

almYlm(n) , (50)

the random variables alm have to satisfy

〈alm〉 = 0, 〈a
lmal′m′〉 = δll′δmm′Cl(η) , (51)

where the Cl(η) depend only on η. Hence the correlation function at the
present time η0 is given by (49), where Cl = Cl(η0), and the bracket now
denotes the statistical average. Thus,

Cl =
1

2l+ 1

〈

l
∑

m=−l
a
lmalm

〉

. (52)

The standard deviations σ(Cl) measure a fundamental uncertainty in the
knowledge we can get about the Cl’s. These are called cosmic variances, and
are most pronounced for low l. In simple inflationary models the alm are
Gaussian distributed, hence

σ(Cl)
Cl

=

√

2
2l+ 1

. (53)

Therefore, the limitation imposed on us (only one sky in one universe) is small
for large l.

6.2 Boltzmann Hierarchy

The brightness temperature fluctuation can be obtained from the perturbation
of the photon distribution function by integrating over the magnitude of the
photon momenta. The linearized Botzmann equation can then be translated
into an equation for Θ, which we now regard as a function of η, xi, and γj ,
where the γj are the directional cosines of the momentum vector relative to
an orthonormal triad field of the unperturbed spatial metric with curvature
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K. Next one performs a harmonic decomposition of Θ, which reads for the
spatially flat case (K = 0)

Θ(η,x,γ) = (2π)−3/2

∫

d3k
∑

l

θl(η, k)Gl(x,γ; k) , (54)

where
Gl(x,γ; k) = (−i)lPl(k̂ · γ) exp(ik · x) . (55)

The dynamical variables θl(η) are the brightness moments, and should be
regarded as random variables. Boltzmann’s equation implies the following
hierarchy of ordinary differential equations for the brightness moments7 θl(η)
(if polarization effects are neglected):

θ′0 = −1
3
kθ1 − Φ′ , (56)

θ′1 = k
(

θ0 + Ψ − 2
5
θ2

)

− τ̇ (θ1 − Vb) , (57)

θ′2 = k
(2

3
θ1 − 3

7
θ3

)

− τ̇ 9
10
θ2 , (58)

θ′l = k
( l

2l− 1
θl−1 − l + 1

2l + 3
θl+1

)

, l > 2 . (59)

Here, Vb is the gauge invariant scalar velocity perturbation of the baryons,
τ̇ = xeneσT a/a0, where a is the scale factor, xene the unperturbed free elec-
tron density (xe = ionization fraction), and σT the Thomson cross section.
Moreover, Φ and Ψ denote the Bardeen potentials. (For further details, see,
e.g., Sect. 6 of [3] or [63], where cosmological perturbation theory is developed
in great detail.)

The Cl are determined by an integral over k, involving a primordial power
spectrum (of curvature perturbations) and the |θl(η)|2, for the corresponding
initial conditions (their transfer functions).

This system of equations is completed by the linearized fluid and Einstein
equations. Various approximations for the Boltzmann hierarchy provide al-
ready a lot of insight. In particular, one can very nicely understand how
damped acoustic oscillations are generated, and in which way they are in-
fluenced by the baryon fraction (again, see [3] or [63]). A typical theoretical
CMB spectrum is shown in Fig. 3. (Beside the scalar contribution in the sense
of cosmological perturbation theory, considered so far, the tensor contribution
due to gravity waves is also shown there.)

6.3 Polarization

A polarization map of the CMB radiation provides important additional in-
formation to that obtainable from the temperature anisotropies. For example,
7 In the literature the normalization of the θl is sometimes chosen differently: θl →

(2l + 1)θl.



Dark Energy 353

large angles one degree arcminutes

acoustic
oscillations

Scalar

Tensor

10 100
l

Sachs-Wolfe
plateau

Total

1000

4x10-10

2x10-10

0

l(
l+

1)
C
l
/2

π

Fig. 3. Theoretical angular temperature–temperature (TT) power spectrum for
adiabatic initial perturbations and typical cosmological parameters. The scalar and
tensor contributions to the anisotropies are also shown

we can get constraints about the epoch of reionization. Most importantly, fu-
ture polarization observations may reveal a stochastic background of gravity
waves, generated in the very early Universe. In this section we give a brief
introduction to the study of CMB polarization.

The mechanism which partially polarizes the CMB radiation is similar
to that for the scattered light from the sky. Consider first scattering at a
single electron of unpolarized radiation coming in from all directions. Due
to the familiar polarization dependence of the differential Thomson cross
section, the scattered radiation is, in general, polarized. It is easy to com-
pute the corresponding Stokes parameters. Not surprisingly, they are not
all equal to zero if and only if the intensity distribution of the incom-
ing radiation has a non-vanishing quadrupole moment. The Stokes param-
eters Q and U are proportional to the overlap integral with the combina-
tions Y2,2 ± Y2,−2 of the spherical harmonics, while V vanishes. This is ba-
sically the reason why a CMB polarization map traces (in the tight cou-
pling limit) the quadrupole temperature distribution on the last scattering
surface.

The polarization tensor of an all sky map of the CMB radiation can be
parametrized in temperature fluctuation units, relative to the orthonormal
basis {dϑ, sinϑ dϕ} of the two sphere, in terms of the Pauli matrices as
Θ · 1 + Qσ3 + Uσ1 + V σ2. The Stokes parameter V vanishes (no circular
polarization). Therefore, the polarization properties can be described by the
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following symmetric trace-free tensor on S2:

(Pab) =
(

Q U
U −Q

)

. (60)

As for gravity waves, the components Q and U transform under a rotation
of the 2-bein by an angle α as

Q± iU → e±2iα(Q± iU) , (61)

and are thus of spin-weight 2. Pab can be decomposed uniquely into electric
and magnetic parts:

Pab = E;ab − 1
2
gabΔE +

1
2
(εacB;bc + εbcB;ac) . (62)

Expanding here the scalar functions E and B in terms of spherical harmonics,
we obtain an expansion of the form

Pab =
∞
∑

l=2

∑

m

[

aE(lm)Y
E
(lm)ab + aB(lm)Y

B
(lm)ab

]

(63)

in terms of the tensor harmonics:

Y E(lm)ab := Nl(Y(lm);ab − 1
2
gabY(lm);c

c), Y B(lm)ab :=
1
2
Nl(Y(lm);acε

c
b + a↔ b) ,

(64)
where l ≥ 2 and

Nl ≡
(

2(l − 2)!
(l + 2)!

)1/2

.

Equivalently, one can write this as

Q+ iU =
√

2
∞
∑

l=2

∑

m

[

aE(lm) + iaB(lm)

]

2Y
m
l , (65)

where sY
m
l are the spin-s harmonics.

As in (50) the multipole moments aE(lm) and aB(lm) are random variables,
and we have equations analogous to (52):

CTEl =
1

2l+ 1

∑

m

〈aΘ
lmaElm〉, etc . (66)

(We have now put the superscript Θ on the alm of the temperature fluc-
tuations.) The Cl’s determine the various angular correlation functions. For
example, one easily finds

〈Θ(n)Q(n′)〉 =
∑

l

CTEl
2l + 1

4π
NlP

2
l (cosϑ) . (67)
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For the spacetime-dependent Stokes parameters Q and U of the radiation
field we can perform a normal mode decomposition analogous to (54). If, for
simplicity, we again consider only scalar perturbations this reads

Q± iU = (2π)−3/2

∫

d3k
∑

l

(El ± iBl)±2G
0
l , (68)

where

sG
m
l (x,γ; k) = (−i)l

(

2l+ 1
4π

)1/2

sY
m
l (γ) exp(ik · x) , (69)

if the mode vector k is chosen as the polar axis. (Note that Gl in (55) is equal
to 0G

0
l .)

The Boltzmann equation implies a coupled hierarchy for the moments
θl, El, and Bl [64, 65]. It turns out that the Bl vanish for scalar perturbations.
Non-vanishing magnetic multipoles would be a unique signature for a spec-
trum of gravity waves. In a sudden decoupling approximation, the present elec-
tric multipole moments can be expressed in terms of the brightness quadrupole
moment on the last scattering surface and spherical Bessel functions as

El(η0, k)
2l+ 1

� 3
8
θ2(ηdec, k)

l2jl(kη0)
(kηo)2

. (70)

Here one sees how the observable El’s trace the quadrupole temperature
anisotropy on the last scattering surface. In the tight coupling approxima-
tion the latter is proportional to the dipole moment θ1.

7 Observational Results
and Cosmological Parameters

In recent years several experiments gave clear evidence for multiple peaks in
the angular temperature power spectrum at positions expected on the basis of
the simplest inflationary models and big bang nucleosynthesis [66]. These re-
sults have been confirmed and substantially improved by the first-year WMAP
data [67, 68, 72]. Fortunately, the improved data after three years of integra-
tion are now available [69]. Below we give a brief summary of some of the
most important results.

Figure 4 shows the 3-year data of WMAP for the TT angular power spec-
trum, and the best fit (power law) ΛCDM model. The latter is a spatially flat
model and involves the following six parameters: Ωbh2

0, ΩMh
2
0, H0, amplitude

of fluctuations,8 σ8, optical depth τ , and the spectral index, ns, of the primor-
dial scalar power spectrum (see Appendix C.7). Figure 5 shows in addition
the TE polarization data [70]. There are now also EE data that lead to a
further reduction of the allowed parameter space. The first column in Table 1
shows the best fit values of the six parameters, using only the WMAP data.
8 σ2

8 is the variance of mass fluctuations in spheres of radius 8 h−1
0 Mpc. ( For a

precise definition, see, e.g., Appendix A of [63].)
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Fig. 4. Three-year WMAP data for the temperature–temperature (TT) power spec-
trum. The black line is the best fit ΛCDM model for the 3-year WMAP data.
(Adapted from Fig. 2 of [69])
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Table 1.

Parameter WMAP alone WMAP + 2dFGRS

100Ωbh
2
0 2.233+0.072

−0.0.091 2.223+0.066
−0.083

ΩMh2
0 0.1268+0.0073

−0.0128 0.1262+0.0050
−0.0103

h0 0.734+0.028
−0.038 0.732+0.018

−0.025

ΩM 0.238+0.027
−0.045 0.236+0.016

−0.029

σ8 0.744+0.050
−0.060 0.737+0.033

−0.045

τ 0.088+0.028
−0.034 0.083+0.027

−0.031

ns 0.951+0.015
−0.019 0.948+0.014

−0.018

Figure 6 shows the prediction of the model for the luminosity-redshift
relation, together with the SLNS data [57] mentioned in Sect. 5.3. For other
predictions and corresponding data sets, see [69].

Combining the WMAP results with other astronomical data reduces the
uncertainties for some of the six parameters. This is illustrated in the second
column which shows the 68% confidence ranges of a joint likelihood analysis
when the power spectrum from the completed 2dFGRS [73] is added. In [69]
other joint constraints are listed (see their Tables 5, 6). In Fig. 7 we reproduce
one of many plots in [69] that shows the joint marginalized contours in the
(ΩM , h0)-plane.

SNLS (Astier et al.'05)

Flat ΛCDM

Empty Universe
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m
pt

y

0.2

-0.2

-0.4
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0 0.5 1.0 1.5 2.0

0

Fig. 6. Prediction for the luminosity-redshift relation from the ΛCDM model model
fit to the WMAP data only. The ordinate is the deviation of the distance modulous
from the empty universe model. The prediction is compared to the SNLS data [57].
(From Fig. 8 of [69])
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Fig. 7. Joint marginalized contours (68% and 95% confidence levels) in the
(ΩM , h0)-plane for WMAP only (solid lines) and additional data (filled red) for
the power-law ΛCDM model. (From Fig. 10 in [69])

The parameter space of the cosmological model can be extended in various
ways. Because of intrinsic degeneracies, the CMB data alone are no more suf-
ficient to determine unambiguously the cosmological model parameters. We
illustrate this for non-flat models. For these the WMAP data (in particular,
the position of the first acoustic peak) restricts the curvature parameter ΩK
to a narrow region around the degeneracy line ΩK = −0.3040+0.4067, ΩΛ =
0.758+0.035

−0.058. This does not exclude models with ΩΛ = 0. However, when,
for instance, the Hubble constant is restricted to an acceptable range, the
universe must be nearly flat. For example, the restriction h0 = 0.72 ± 0.08
implies that ΩK = −0.003+0.013

−0.017. Other strong limits are given in Table 11
of [69], assuming that w = −1. But even when this is relaxed, the combined
data constrain ΩK and w significantly (see Fig. 17 of [69]). The marginal-
ized best fit values are w = −1.062+0.128

−0.079, ΩK = −0.024+0.016
−0.013 at the 68%

confidence level.
The restrictions on w – assumed to have no z-dependence – for a flat model

are illustrated in Fig. 8.
Another interesting result is that reionization of the Universe has set in

at a redshift of zr = 10.9+2.7
−2.3. Later we shall add some remarks on what has

been learnt about the primordial power spectrum.
It is most remarkable that a six parameter cosmological model is able to

fit such a rich body of astronomical observations. There seems to be little
room for significant modifications of the successful ΛCDM model. In spite of
this we discuss in the next section some proposed attempts to explain the
observations without dark energy.
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Fig. 8. Constraints on the equation of state parameter w in a flat universe model
when WMAP data are combined with the 2dFGRS data. (From Fig. 15 in [69])

8 Alternatives to Dark Energy

In the previous two sections we have discussed some of the wide range of
astronomical data that support the following ‘concordance model’: The Uni-
verse is spatially flat and dominated by a dark energy component and weakly
interacting cold dark matter. Furthermore, the primordial fluctuations are
adiabatic, nearly scale invariant and Gaussian, as predicted in simple infla-
tionary models (see Sect. C.7). It is very likely that the present concordance
model will survive phenomenologically.

A dominant dark energy component with density parameter � 0.7 is so
surprising that it should be examined whether this conclusion is really un-
avoidable. In what follows I shall briefly discuss some alternatives that have
been proposed.

8.1 Changes in the Initial Conditions

Since we do not have a tested theory predicting the spectrum of primordial
fluctuations, it appears reasonable to consider a wider range of possibilities
than simple power laws. An instructive attempt in this direction was made
some time ago [74], by constructing an Einstein–de Sitter model with ΩΛ = 0,
fitting the CMB data as well as the power spectrum of 2dFGRS. In this the
Hubble constant is, however, required to be rather low: H0 � 46 km/s/Mpc.
The authors argued that this cannot definitely be excluded, because ‘physical’
methods lead mostly to relatively low values of H0. In order to be consistent
with matter fluctuations on cluster scales they added relic neutrinos with de-
generate masses of order eV or a small contribution of quintessence with zero
pressure (w = 0). In addition, they ignored the direct evidence for an acceler-
ating Universe from the Hubble-diagram for distant Type Ia supernovae, on
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the basis of remaining systematic uncertainties. In the meantime, significant
improvements in astronomical data sets have been made. In particular, the
analysis of the 3-year WMAP data showed that there are no significant fea-
tures in the primordial curvature fluctuation spectrum (see Sect. 5 of [69]).
With the larger samples of high redshift supernovae and more precise informa-
tion on large-scale galaxy clustering, such models with vanishing dark energy
are no more possible [75].

8.2 Inhomogeneous Models

Backreaction

It has recently been suggested [76, 77] that perturbations on scales larger than
the Hubble length, likely generated in the context of inflation, could mimic
dark energy and cause acceleration. This suggestion caused a lot of discussion,
and several papers addressed the question whether this is really possible.
We repeat below a simple general argument given in [78] that the originally
proposed mechanism cannot lead to acceleration, under the assumptions made
in the cited papers. These include that the 4-velocity field uμ of the CDM
particles is geodesic and has zero vorticity ωμν . It is easy to see that these
assumptions imply that the 1-form u, belonging to the velocity field, has
a vanishing exterior derivative. Hence we have locally u = dt, thus uμ is
perpendicular to the slices {t = const}. Moreover the metric and the velocity
have the form

g = −dt2 + ḡt, u = ∂t , (71)

where ḡt is a t-dependent metric on slices of constant time t.
For such an inhomogeneous cosmological model one can introduce various

definitions of the deceleration parameter which reduce to the familiar one for
Friedmann models. We adopt here the one used in [77]. To motivate this,
consider for some initial time tin a spatial domain D and let this evolve
according to the flow of u. If ωt denotes the volume form belonging to ḡt,
then we have for the volume |Dt| and its time derivatives

|Dt| =
∫

ωt, ˙|Dt| =
∫

θωt, ¨|Dt| =
∫

(θ̇ + θ2)ωt , (72)

where θ = ∇ · u denotes the expansion. If l := |Dt|1/3, a natural definition of
the deceleration parameter is q = −(ll̈)/l̇2. This can be expressed as follows

1
3

( ˙|Dt|)2
|Dt|2 q = −

(

¨|Dt|
|Dt| −

2
3

( ˙|Dt|)2
|Dt|2

)

. (73)

For an infinitesimal |Dt| we obtain from the previous equations

1
3
θ2q = −(θ̇ +

1
3
θ2) . (74)
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For the right-hand side we can now use the Raychaudhuri equation

θ̇ +
1
3
θ2 = −σμνσμν + ωμνωμν −Rμνuμuν , (75)

where σμν is the shear. For a vanishing vorticity, and imposing the strong
energy condition (assumed in [77]), we see that q ≥ 0. In this sense there is
no acceleration.

A priori, a way out proposed in [76], is to argue that q as defined above
is not what is measured in SN Ia observations. To analyze these one has to
generalize the redshift–luminosity distance relation to inhomogeneous models.
In doing this, two possible definitions for the deceleration parameter arise. One
of them (q4 in [78]) again has to be non-negative if the strong energy condition
holds. The other (q3 in [78]) may be negative, but in this case the supernova
data would have to show acceleration in certain directions and deceleration
in others. This is, however, not observed.

Kolb et al. have reacted to these considerations [79]. They admit that
super-Hubble modes cannot lead to an acceleration, but they maintain that
sub-Hubble modes may cause a large backreaction that may imply an effective
acceleration. The authors stress that for investigating the effective dynamics
averaging over a volume of size comparable with the present-day Hubble vol-
ume is essential. Let me add a few remarks on this. Adopting the notation

〈θ〉 =
∫

θωt
∫

ωt
, etc , (76)

and using the Raychaudhuri equation, we can write

1
3

(|Dt|·)2
|Dt|2 q = −〈θ̇ + θ2〉+ 2

3
〈θ〉2

= −〈θ̇ +
1
3
θ2〉 − 2

3
(〈θ2〉 − 〈θ〉2)

= 〈σμνσμν +Rμνuμuν〉 − 2
3
(〈θ2〉 − 〈θ〉2) . (77)

The first term in the last equation, is non-negative if the strong energy
condition holds, while the second term is non-positive.

The authors of [79] suggest that the second term may win and make q
negative. To decide on the basis of detailed calculations whether this is indeed
possible is a very difficult task. From what we know about the CMB radiation
it appears, however, unlikely that there are such sizable perturbations out to
very large scales. We shall say more about this in the next section.

The work by Kolb et al. triggered a lot of activity. (For a review, see [80].)
We add some remarks about the ongoing discussion.

Power Spectrum of the Luminosity Distance

The deceleration parameter, defined in (73), has a simple geometrical meaning,
but is not a directly measurable quantity. From an observational point of view,
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a more satisfactory approach is to generalize the magnitude–redshift relation,
and study the fluctuations of the luminosity distance.

The magnitude–redshift relation in a perturbed Friedmann model has been
derived in [81], and was later used to determine the angular power spectrum
of the luminosity distance (the Cl’s defined in analogy to (49)) [82]. One of
the numerical results was that the uncertainties in determining cosmological
parameters via the magnitude–redshift relation caused by fluctuations are
small compared with the intrinsic dispersion in the absolute magnitude of
Type Ia supernovae.

This subject was recently taken up in [83], as part of a program to de-
velop the tools for extracting cosmological parameters, when much extended
supernovae data become available.

Exact Inhomogeneous Model Studies

Effects of inhomogeneous matter distribution on light propagation were re-
cently studied in the Lemâıtre–Tolman (LT) model, in order to see whether
these can mimic an accelerated expansion.

The LT model is a family of spherically symmetric dust solutions of
Einstein’s equations, with a metric of the form

g = −dt2 +
R2
,r(r, t)

1 + 2E(r)
dr2 +R2(r, t)(dϑ2 + sin2 ϑdϕ2) . (78)

The metric functions E(r), R(r, t), and a matter function M(r) satisfy, as a
consequence of Einstein’s equations, the differential equations

M,r = 4πρR2R,r, R2
,t = 2E +

2GM
R

+
1
3
ΛR2 . (79)

For these models the magnitude–redshift relation can be worked out exactly.
As an example we mention [84], where it was shown that for Λ = 0 the

observed behavior of supernovae brightness cannot be fitted, unless our po-
sition in the model universe is very special. In that case one has to analyze
also other data, in particular the CMB angular power spectrum. At the time
of writing, this has not yet been done, but is certainly underway.

8.3 Modifications of Gravity

Since no satisfactory explanation of dark energy has emerged so far, possi-
ble modifications of GR, which would change the late expansion rate of the
universe, have recently come into the focus of attention. The cosmic speed-up
might, for instance, be explained by sub-dominant terms (like 1/R) that be-
come essential at small curvature. Modified gravity models have to be devised
such that to pass the stringent Solar System tests, and are compatible with
the observational data that support the concordance model.
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Generalizations of the Einstein–Hilbert Action

The simplest generalization consists in replacing the Ricci scalar, R, in the
Einstein–Hilbert action by a function f(R). Note that this gives rise to fourth-
order field equations.9 Applying a suitable conformal transformation of the
metric, the action becomes equivalent to a scalar-tensor theory. In detail, if
we define a new metric g̃μν =

[

exp(2κ/3)1/2ϕ
]

gμν , then the action becomes

S =
∫ [

1
2κ
R[g̃]− 1

2
g̃αβ∂αϕ∂βϕ− V (ϕ) + Lmatter

]

√

−g̃d4x , (80)

where the potential V is determined by the function f . With this formulation
one can, for instance, show that an arbitrary evolution of the scale factor a(t)
can be obtained with an appropriate choice of f(R). It is also useful to check
whether a particular model passes Solar System tests (acceptable Brans-Dicke
parameter). One should, however, bear in mind that the two mathematically
equivalent descriptions lead to physically different properties, for instance with
regard to stability. These issues and the application for specific functions f to
Friedmann spacetimes have recently been reviewed in [85].

A class of models that lead to cosmic acceleration is of the form f(R) =
R + α/Rn, n > 0. There has been a debate on whether such models (espe-
cially for n = 1) are consistent with Solar System tests. Some authors argued
that this is the case, because they admit as a static spherically symmetric
solution the Schwarzschild–de Sitter metric. This is, however, by no means
sufficient. As already emphasized, this vacuum solution is far from unique.
The correct one must match onto a physically acceptable solution for the in-
terior of the star. In [86] it was shown for n = 1, i.e., for f(R) = R − μ4/R,
that this requirement implies for the PPN parameter γ the value 1/2, in
gross violation of the measured value γ = 1 + (2.1 ± 2.3) × 10−5. This con-
firms an earlier claim by Chiba [87] that was based on the scalar-tensor
reformulation (80).

Presumably, similar statements can be made for a large class of f(R)
models. Apart from their ad hoc nature, it has not yet been demonstrated
that there are examples which satisfy all the constraints stressed above.
The same can be said on generalizations [88], which include other curvature
invariants, such as RμνRμν , RαβγδRαβγδ. In addition, such models are in
most cases unstable, like mechanical Lagrangian systems with higher deriva-
tives [89].10 An exception seem to be Lagrangians which are functions of
9 Spherically symmetric vacuum solutions are, therefore, far from unique. Con-

nected with this is that Birkhoff’s theorem fails. So, on the basis of the vacuum
equations the perihelion motion (for example) is no more predicted, but at best
compatible with the theory. This is an enormous loss. (The reader may reflect
about other drawbacks.)

10 This paper contains a discussion of a generic instability of Lagrangian systems in
mechanics with higher derivatives, which was discovered by M. Ostrogradski in
1850.
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R and the Gauss–Bonnet invariant G = R2 − 4RμνRμν + RαβγδR
αβγδ. By

introducing two scalar fields such models can be written as an Einstein–
Hilbert term plus a particular extra piece, containing a linear coupling to
G. Because the Gauss–Bonnet invariant is a total divergence the correspond-
ing field equations are of second order. This does, however, not guarantee
that the theory is ghost-free. In [90] this question was studied for a class
of models [88] for which there exist accelerating late-time power-law attrac-
tors and which satisfy the solar system constraints. It turned out that in a
Friedmann background there are no ghosts, but there is instead superluminal
propagation for a wide range of parameter space. This acausality is remi-
niscent of the Velo-Zwanziger phenomenon [92] for higher (> 1) spin fields
coupled to external fields. It may very well be that it can only be avoided if
very special conditions are satisfied. This issue deserves further investigations.
See also [91].

First-Order Modifications of GR

The disadvantage of complicated fourth-order equations can be avoided by
using the Palatini variational principle, in which the metric and the sym-
metric affine connection (the Christoffel symbols Γαμν) are considered to be
independent fields.11

For GR the ‘Palatini formulation’ is equivalent to the Einstein–Hilbert
variational principle, because the variational equation with respect to Γαμν
implies that the affine connection has to be the Levi–Civita connection. Things
are no more that simple for f(R) models:

S =
∫ [

1
2κ
f(R) + Lmatter

]√−gd4x , (81)

where R[g, Γ ] = gαβRαβ [Γ ], Rαβ [Γ ] being the Ricci tensor of the independent
torsionless connection Γ . The equations of motion are in obvious notation

f ′(R)R(μν)[Γ ]− 1
2
f(R)gμν = κTμν , (82)

∇Γα
(√−gf ′(R)gμν

)

= 0 . (83)

For the second of these equations one has to assume that Lmatter is function-
ally independent of Γ . (It may, however, contain metric covariant derivatives.)

Equation (83) implies that

∇Γα
[
√

−ĝĝμν
]

= 0 (84)

for the conformally equivalent metric ĝμν = f ′(R)gμν . Hence, the Γαμν are
equal to the Christoffel symbols for the metric ĝμν .
11 This approach was actually first introduced by Einstein (S.B. Preuss. Akad. Wiss.,

414 (1925)). This is correctly stated in Pauli’s classical text, p. 215.
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The trace of (82) gives

Rf ′(R)− 2f(R) = κT .

Thanks to this algebraic equation we may regard R as a function of T . In
the matter-free case it is identically satisfied if f(R) is proportional to R2. In
all other cases R is equal to a constant c (which is in general not unique). If
f ′(c) 	= 0, (83) implies that Γ is the Levi–Civita connection of gμν , and (82)
reduces to Einstein’s vacuum equation with a cosmological constant. In gen-
eral, one can rewrite the field equations in the form of Einstein gravity with
non-standard matter couplings.12 Because of this it is, for instance, straight-
forward to develop cosmological perturbation theory [94].

Koivisto [95] has applied this to study the resulting matter power spec-
trum, and showed that the comparison with observations leads to strong
constraints. The allowed parameter space for a model of the form f(R) =
R − αRβ (α > 0, β < 1) is reduced to a tiny region around the ΛCDM
cosmology. For a related investigation, see [96].

The literature on this type of generalized gravity models is rapidly increasing.

Brane-World Models

Certain brane-world models13 lead to modifications of Friedmann cosmol-
ogy at very large scales. An interesting example has been proposed by
Dvali, Gabadadze, and Porrati (DGP), for which the theory remains four-
dimensional at ‘short’ distances, but crosses over to higher-dimensional be-
havior of gravity at some very large distance [97]. This model has the same
number of parameters as the successful ΛCDM cosmology, but contains no
dark energy. The resulting modified Friedmann equations can give rise to uni-
verses with accelerated expansion, due to an infrared modification of gravity.

In [100] the predictions of the model have been confronted with latest
supernovae data [57], and the position of the acoustic peak in the Sloan digital
sky survey (SDSS) correlation function for a luminous red galaxy sample [101].
The result is that a flat DGP brane model is ruled out at 3σ. A similar analysis
was more recently performed in [99], including also the CMB shift parameter
that effectively determines the first acoustic peak (see Sect. 8.1). The authors
arrive at the conclusion that the flat DGP models are within the 1σ contours,
but that the flat ΛCDM model provides a better fit to the data. They also
point out some level of uncertainty in the use of the data, and conservatively
conclude that the flat DGP models are within joint 2σ contours.

12 It is shown in [93] that if the matter action is independent of Γ , the theory
is dynamically equivalent to a Brans-Dicke theory with Brans-Dicke parameter
−3/2, plus a potentiel term.

13 For a review, see [98].
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This nicely illustrates that observational data are restricting theoretical
speculations more and more.

The DGP models have, however, serious defects on a fundamental level. A
detailed analysis of the excitations about the self-accelerating solution showed
that there is a ghost mode (negative kinetic energy) [102, 103]. Furthermore,
it has very recently been pointed out [104] that due to superluminal fluctua-
tions around non-trivial backgrounds, there is no local causal evolution. This
infrared breakdown also happens for other apparently consistent low-energy
effective theories.

* * *

The previous discussion should have made it clear that it is extremely
difficult to construct consistent modifications of GR that lead to an accelerated
universe at late times. The dark energy problems will presumably stay with us
for a long time. Understanding the nature of DE is widely considered as one
of the main goals of cosmological research for the next decade and beyond.

A Essentials of Friedmann–Lemâıtre Models

In this Appendix those parts of the standard model of cosmology that are
needed throughout the text will be briefly introduced. More extensive treat-
ments can be found at many places, for instance in the recent textbooks on
cosmology [105], [106], [107], [108], [109].

A.1 Friedmann–Lemâıtre Spacetimes

There is now good evidence that the (recent as well as the early) Universe14 is –
on large scales – surprisingly homogeneous and isotropic. The most impressive
support for this comes from extended redshift surveys of galaxies and from
the truly remarkable isotropy of the CMB. In the two degree field (2dF)
galaxy redshift survey,15 completed in 2003, the redshifts of about 250,000
galaxies have been measured. The distribution of galaxies out to 4 billion
light years shows that there are huge clusters, long filaments, and empty
voids measuring over 100 million light years across. But the map also shows

14 By Universe I always mean that part of the world around us which is in prin-
ciple accessible to observations. In my opinion the ‘Universe as a whole’ is not
a scientific concept. When talking about model universes, we develop on paper
or with the help of computers, I tend to use lower case letters. In this domain
we are, of course, free to make extrapolations and venture into speculations, but
one should always be aware that there is the danger to be drifted into a kind of
‘cosmo-mythology’.

15 Consult the Home Page: http://www.mso.anu.edu. au/2dFGRS.



Dark Energy 367

that there are no larger structures. The more extended SDSS has already
produced very similar results, and will in the end have spectra of about a
million galaxies.16

One arrives at the Friedmann(–Lemâıtre–Robertson–Walker) spacetimes
by postulating that for each observer, moving along an integral curve of
a distinguished four-velocity field u, the Universe looks spatially isotropic.
Mathematically, this means the following: Let Isox(M) be the group of local
isometries of a Lorentz manifold (M, g), with fixed point x ∈ M , and let
SO3(ux) be the group of all linear transformations of the tangent space Tx(M)
which leave the four-velocity ux invariant and induce special orthogonal trans-
formations in the subspace orthogonal to ux, then

{Txφ : φ ∈ Isox(M), φ
u = u} ⊇ SO3(ux)

(φ
 denotes the push-forward belonging to φ; see [1], p. 550). In [110] it
is shown that this requirement implies that (M, g) is a Friedmann space-
time, whose structure we now recall. Note that (M, g) is then automatically
homogeneous.

A Friedmann spacetime (M, g) is a warped product of the formM = I×Σ,
where I is an interval of R, and the metric g is of the form

g = −dt2 + a2(t)γ , (85)

such that (Σ, γ) is a Riemannian space of constant curvature k = 0,±1. The
distinguished time t is the cosmic time, and a(t) is the scale factor (it plays the
role of the warp factor (see Appendix B of [1])). Instead of t we often use the
conformal time η, defined by dη = dt/a(t). The velocity field is perpendicular
to the slices of constant cosmic time, u = ∂/∂t.

Spaces of Constant Curvature

For the space (Σ, γ) of constant curvature17 the curvature is given by

R(3)(X,Y )Z = k [γ(Z, Y )X − γ(Z,X)Y ] ; (86)

in components
R

(3)
ijkl = k(γikγjl − γilγjk) . (87)

Hence, the Ricci tensor and the scalar curvature are

R
(3)
jl = 2kγjl , R(3) = 6k . (88)

16 For a description and pictures, see the Home Page: http://www.sdss.org/
sdss.html.

17 For a detailed discussion of these spaces I refer – for readers knowing German –
to [111] or [112].



368 N. Straumann

For the curvature two-forms we obtain from (87) relative to an orthonormal
triad {θi}

Ω
(3)
ij =

1
2
R

(3)
ijkl θ

k ∧ θl = k θi ∧ θj (89)

(θi = γikθ
k). The simply connected constant curvature spaces are in n dimen-

sions the (n+1)-sphere Sn+1 (k = 1), the Euclidean space (k = 0), and the
pseudo-sphere (k = −1). Non-simply connected constant curvature spaces are
obtained from these by forming quotients with respect to discrete isometry
groups. (For detailed derivations, see [111].)

Curvature of Friedmann Spacetimes

Let {θ̄i} be any orthonormal triad on (Σ, γ). On this Riemannian space the
first-structure equations read (we use the notation in [1]; quantities referring
to this three-dimensional space are indicated by bars)

dθ̄i + ω̄ij ∧ θ̄j = 0 . (90)

On (M, g) we introduce the following orthonormal tetrad:

θ0 = dt, θi = a(t)θ̄i . (91)

From this and (90) we get

dθ0 = 0, dθi =
ȧ

a
θ0 ∧ θi − a ω̄ij ∧ θ̄j . (92)

Comparing this with the first-structure equation for the Friedmann manifold
implies

ω0
i ∧ θi = 0, ωi0 ∧ θ0 + ωij ∧ θj =

ȧ

a
θi ∧ θ0 + a ω̄ij ∧ θ̄j , (93)

whence

ω0
i =

ȧ

a
θi, ωij = ω̄ij . (94)

The worldlines of comoving observers are integral curves of the four-
velocity field u = ∂t. We claim that these are geodesics, i.e., that

∇uu = 0 . (95)

To show this (and for other purposes) we introduce the basis {eμ} of vector
fields dual to (91). Since u = e0 we have, using the connection forms (94),

∇uu = ∇e0e0 = ωλ0(e0)eλ = ωi0(e0)ei = 0 .
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A.2 Einstein Equations for Friedmann Spacetimes

Inserting the connection forms (94) into the second-structure equations we
readily find for the curvature 2-forms Ωμν :

Ω0
i =

ä

a
θ0 ∧ θi, Ωij =

k + ȧ2

a2
θi ∧ θj . (96)

A routine calculation leads to the following components of the Einstein tensor
relative to the basis (91)

G00 = 3
(

ȧ2

a2
+
k

a2

)

, (97)

G11 = G22 = G33 = −2
ä

a
− ȧ

2

a2
− k

a2
, (98)

Gμν = 0 (μ 	= ν) . (99)

In order to satisfy the field equations, the symmetries of Gμν imply
that the energy–momentum tensor must have the perfect fluid form (see [1],
Sect. 1.4.2):

T μν = (ρ+ p)uμuν + pgμν , (100)

where u is the comoving velocity field introduced above.
Now, we can write down the field equations (including the cosmological

term),

3
(

ȧ2

a2
+
k

a2

)

= 8πGρ+ Λ , (101)

−2
ä

a
− ȧ

2

a2
− k

a2
= 8πGp− Λ . (102)

Although the ‘energy–momentum conservation’ does not provide an inde-
pendent equation, it is useful to work this out. As expected, the momentum
‘conservation’ is automatically satisfied. For the ‘energy conservation’ we use
the general form (see (1.37) in [1])

∇uρ = −(ρ+ p)∇ · u . (103)

In our case we have for the expansion rate

∇ · u = ωλ0(eλ)u0 = ωi0(ei) ,

thus with (94)

∇ · u = 3
ȧ

a
. (104)

Therefore, (103) becomes

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 . (105)
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For a given equation of state, p = p(ρ), we can use (105) in the form

d

da
(ρa3) = −3pa2 (106)

to determine ρ as a function of the scale factor a. Examples: (1) For free
massless particles (radiation) we have p = ρ/3, thus ρ ∝ a−4. (2) For dust
(p = 0) we get ρ ∝ a−3.

With this knowledge the Friedmann equation (101) determines the time
evolution of a(t). It is easy to see that (102) follows from (101) and (105).

As an important consequence of (101) and (102) we obtain for the accel-
eration of the expansion

ä = −4πG
3

(ρ+ 3p)a+
1
3
Λa . (107)

This shows that as long as ρ + 3p is positive, the first term in (107) is de-
celerating, while a positive cosmological constant is repulsive. This becomes
understandable if one writes the field equation as

Gμν = κ(Tμν + TΛμν) (κ = 8πG) , (108)

with
TΛμν = − Λ

8πG
gμν . (109)

This vacuum contribution has the form of the energy–momentum tensor of an
ideal fluid, with energy density ρΛ = Λ/8πG and pressure pΛ = −ρΛ. Hence
the combination ρΛ + 3pΛ is equal to −2ρΛ, and is thus negative. In what
follows we shall often include in ρ and p the vacuum pieces.

A.3 Redshift

As a result of the expansion of the Universe the light of distant sources appears
redshifted. The amount of redshift can be simply expressed in terms of the
scale factor a(t).

Consider two integral curves of the average velocity field u. We imagine
that one describes the worldline of a distant comoving source and the other
that of an observer at a telescope (see Fig. 9). Since light is propagating along
null geodesics, we conclude from (85) that along the worldline of a light ray
dt = a(t)dσ, where dσ is the line element on the three-dimensional space
(Σ, γ) of constant curvature k = 0,±1. Hence the integral on the left of

∫ to

te

dt

a(t)
=

∫ obs.

source

dσ , (110)

between the time of emission (te) and the arrival time at the observer (to) is
independent of te and to. Therefore, if we consider a second light ray that is
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Source (te)

Observer (to)

Integral curve of uμdt 
= a(

t) 
dσ

Fig. 9. Redshift for Friedmann models

emitted at the time te +Δte and is received at the time to +Δto, we obtain
from the last equation

∫ to+Δto

te+Δte

dt

a(t)
=

∫ to

te

dt

a(t)
. (111)

For a small Δte this gives

Δto
a(to)

=
Δte
a(te)

.

The observed and the emitted frequences νo and νe, respectively, are thus
related according to

νo
νe

=
Δte
Δto

=
a(te)
a(to)

. (112)

The redshift parameter z is defined by

z :=
νe − νo
νo

, (113)

and is given by the key equation

1 + z =
a(to)
a(te)

. (114)

One can also express this by the equation ν · a = const along a null geodesic.
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A.4 Cosmic Distance Measures

We now introduce a further important tool, namely operational definitions of
three different distance measures, and show that they are related by simple
redshift factors.

If D is the physical (proper) extension of a distant object and δ is its angle
subtended, then the angular diameter distance DA is defined by

DA := D/δ . (115)

If the object is moving with the proper transversal velocity V⊥ and with
an apparent angular motion dδ/dt0, then the proper-motion distance is by
definition

DM :=
V⊥

dδ/dt0
. (116)

Finally, if the object has the intrinsic luminosity L and F is the received
energy flux then the luminosity distance is naturally defined as

DL := (L/4πF)1/2 . (117)

Below we show that these three distances are related as follows

DL = (1 + z)DM = (1 + z)2DA. (118)

It will be useful to introduce on (Σ, γ) ‘polar’ coordinates (r, ϑ, ϕ), such
that

γ =
dr2

1− kr2 + r2dΩ2, dΩ2 = dϑ2 + sin2 ϑdϕ2 . (119)

One easily verifies that the curvature forms of this metric satisfy (89). (This
follows without doing any work by using in [1] the curvature forms (3.9) in
the ansatz (3.3) for the Schwarzschild metric.)

To prove (118) we show that the three distances can be expressed as fol-
lows, if re denotes the comoving radial coordinate (in (119)) of the distant
object and the observer is (without loss of generality) at r = 0.

DA = rea(te), DM = rea(t0), DL = rea(t0)
a(t0)
a(te)

. (120)

Once this is established, (118) follows from (114).
From Fig. 10 and (119) we see that

D = a(te)reδ , (121)

hence the first equation in (120) holds.
To prove the second one we note that the source moves in a time dt0 a

proper transversal distance
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rea(to) to

r 
=

 r
e r 
=

 r
e 

dte D

r 
=

 0
 

Fig. 10. Spacetime diagram for cosmic distance measures. The angular diameter
distance Dang ≡ DA and the luminosity distance Dlum ≡ DL have been introduced
in this Appendix. The other two will be introduced in the Appendix C

dD = V⊥dte = V⊥dt0
a(te)
a(t0)

.

Using again the metric (119) we see that the apparent angular motion is

dδ =
dD

a(te)re
=
V⊥dt0
a(t0)re

.

Inserting this into the definition (116) shows that the second equation in (120)
holds. For the third equation we have to consider the observed energy flux. In
a time dte the source emits an energy Ldte. This energy is redshifted to the
present by a factor a(te)/a(t0), and is now distributed by (119) over a sphere
with proper area 4π(rea(t0))2 (see Fig. 10). Hence the received flux (apparent
luminosity) is

F = Ldte a(te)
a(t0)

1
4π(rea(t0))2

1
dt0

,

thus

F =
La2(te)

4πa4(t0)r2e
.

Inserting this into the definition (117) establishes the third equation in (120).
For later applications we write the last equation in the more transparent form

F =
L

4π(rea(t0))2
1

(1 + z)2
. (122)

The last factor is due to redshift effects.
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Fig. 11. Cosmological distance measures as a function of source redshift for two
cosmological models

Two of the discussed distances as a function of z are shown in Fig. 11 for
two Friedmann models with different cosmological parameters. The other two
distance measures will be introduced in Appendix C.

B Thermal History below 100 MeV

B.1 Overview

Below the transition at about 200 MeV from a quark-gluon plasma to the con-
finement phase, the Universe was initially dominated by a complicated dense
hadron soup. The abundance of pions, for example, was so high that they
nearly overlapped. The pions, kaons, and other hadrons soon began to decay
and most of the nucleons and antinucleons annihilated, leaving only a tiny
baryon asymmetry. The energy density is then almost completely dominated
by radiation and the stable leptons (e±, the three neutrino flavors, and their
antiparticles). For some time all these particles are in thermodynamic equi-
librium. For this reason, only a few initial conditions have to be imposed. The
Universe was never as simple as in this lepton era. (At this stage it is almost
inconceivable that the complex world around us would eventually emerge.)

The first particles which freeze out of this equilibrium are the weakly
interacting neutrinos. Let us estimate when this happened. The coupling of
the neutrinos in the lepton era is dominated by the reactions:

e− + e+ ↔ ν + ν̄ , e± + ν → e± + ν , e± + ν̄ → e± + ν̄ .
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For dimensional reasons, the cross sections are all of magnitude

σ � G2
FT

2 , (123)

where GF is the Fermi coupling constant (� = c = kB = 1). Numerically,
GFm

2
p � 10−5. On the other hand, the electron and neutrino densities ne, nν

are about T 3. For this reason, the reaction rates Γ for ν-scattering and ν-
production per electron are of magnitude c · v · ne � G2

FT
5. This has to be

compared with the expansion rate of the Universe

H =
ȧ

a
� (Gρ)1/2 .

Since ρ � T 4 we get
H � G1/2T 2 , (124)

and thus
Γ

H
� G−1/2G2

FT
3 � (T/1010 K)3 . (125)

This ration is larger than 1 for T > 1010 K � 1 MeV, and the neutrinos thus
remain in thermodynamic equilibrium until the temperature has decreased to
about 1 MeV. But even below this temperature the neutrinos remain Fermi
distributed,

nν(p)dp =
1

2π2

1
ep/Tν + 1

p2dp , (126)

as long as they can be treated as massless. The reason is that the number den-
sity decreases as a−3 and the momenta with a−1. Because of this we also see
that the neutrino temperature Tν decreases after decoupling as a−1. The same
is, of course, true for photons. The reader will easily find out how the distri-
bution evolves when neutrino masses are taken into account. (Since neutrino
masses are so small this is only relevant at very late times.)

B.2 Chemical Potentials of the Leptons

The equilibrium reactions below 100 MeV, say, conserve several additive quan-
tum numbers,18 namely the electric charge Q, the baryon number B, and the
three lepton numbers Le, Lμ, Lτ . Correspondingly, there are five independent
chemical potentials. Since particles and antiparticles can annihilate to pho-
tons, their chemical potentials are oppositely equal: μe− = −μe+ , etc. From
the following reactions

e− + μ+ → νe + ν̄μ, e− + p→ νe + n, μ− + p→ νμ + n

18 Even if B,Le, Lμ, Lτ should not be strictly conserved, this is not relevant within
a Hubble time H−1

0 .
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we infer the equilibrium conditions

μe− − μνe = μμ− − μνμ = μn − μp . (127)

As independent chemical potentials we can thus choose

μp, μe− , μνe , μνμ , μντ . (128)

Because of local electric charge neutrality, the charge number density nQ
vanishes. From observations (see subsection E) we also know that the baryon
number density nb is much smaller than the photon number density (∼ en-
tropy density sγ). The ratio nB/sγ remains constant for adiabatic expansion
(both decrease with a−3; see the next section). Moreover, the lepton number
densities are

nLe = ne− + nνe − ne+ − nν̄e , nLμ = nμ− + nνμ − nμ+ − nν̄μ , etc . (129)

Since in the present Universe the number density of electrons is equal to
that of the protons (bound or free), we know that after the disappearance
of the muons ne− � ne+ (recall nB � nγ), thus μe− (= −μe+) � 0. It
is conceivable that the chemical potentials of the neutrinos and antineutrinos
cannot be neglected, i.e., that nLe is not much smaller than the photon number
density. In analogy to what we know about the baryon density we make the
reasonable asumption that the lepton number densities are also much smaller
than sγ . Then we can take the chemical potentials of the neutrinos equal
to zero (|μν |/kT � 1). With what we said before, we can then put the five
chemical potentials (128) equal to zero, because the charge number densities
are all odd in them. Of course, nB does not really vanish (otherwise we would
not be here), but for the thermal history in the era we are considering they
can be ignored.

B.3 Constancy of Entropy

Let ρeq, peq denote (in this subsection only) the total energy density and pres-
sure of all particles in thermodynamic equilibrium. Since the chemical poten-
tials of the leptons vanish, these quantities are only functions of the temper-
ature T . According to the second law, the differential of the entropy S(V, T )
is given by

dS(V, T ) =
1
T

[d(ρeq(T )V ) + peq(T )dV ] . (130)

This implies

d(dS) = 0 = d

(

1
T

)

∧ d(ρeq(T )V ) + d
(

peq(I)
T

)

∧ dV

= −ρeq
T 2
dT ∧ dV +

d

dT

(

peq(T )
T

)

dT ∧ dV ,
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i.e., the Maxwell relation

dpeq(T )
dT

=
1
T

[ρeq(T ) + peq(T )] . (131)

If we use this in (130), we get

dS = d

[

V

T
(ρeq + peq)

]

,

so the entropy density of the particles in equilibrium is

s =
1
T

[ρeq(T ) + peq(T )] . (132)

For an adiabatic expansion the entropy in a comoving volume remains
constant:

S = a3s = const . (133)

This constancy is equivalent to the energy equation (105) for the equilibrium
part. Indeed, the latter can be written as

a3 dpeq
dt

=
d

dt
[a3(ρeq + peq)] ,

and by (132) this is equivalent to dS/dt = 0.
In particular, we obtain for massless particles (p = ρ/3) from (131) again

ρ ∝ T 4 and from (132) that S = constant implies T ∝ a−1.
Once the electrons and positrons have annihilated below T ∼ me, the equi-

librium components consist of photons, electrons, protons, and – after the big
bang nucleosynthesis – of some light nuclei (mostly He4). Since the charged
particle number densities are much smaller than the photon number density,
the photon temperature Tγ still decreases as a−1. Let us show this formally.
For this we consider beside the photons an ideal gas in thermodynamic equi-
librium with the black body radiation. The total pressure and energy density
are then (we use units with � = c = kB = 1; n is the number density of the
non-relativistic gas particles with mass m):

p = nT +
π2

45
T 4, ρ = nm+

nT

γ − 1
+
π2

15
T 4 (134)

(γ = 5/3 for a monoatomic gas). The conservation of the gas particles, na3 =
const., together with the energy equation (106) implies, if σ := sγ/n,

d lnT
d ln a

= −
[

σ + 1
σ + 1/3(γ − 1)

]

.

For σ � 1 this gives the well-known relation T ∝ a3(γ−1) for an adiabatic
expansion of an ideal gas.
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We are, however, dealing with the opposite situation σ � 1, and then we
obtain, as expected, a · T = const.

Let us look more closely at the famous ratio nB/sγ . We need

sγ =
4

3T
ργ =

4π2

45
T 3 = 3.60nγ, nB = ρB/mp = ΩBρcrit/mp . (135)

From the present value of Tγ � 2.7K and (30), ρcrit = 1.12×10−5 h2
0(mp/cm3),

we obtain as a measure for the baryon asymmetry of the Universe

nB
sγ

= 0.75× 10−8(ΩBh2
0) . (136)

It is one of the great challenges to explain this tiny number. So far, this has
been achieved at best qualitatively in the framework of grand unified theories
(GUTs).

B.4 Neutrino Temperature

During the electron–positron annihilation below T = me the a-dependence
is complicated, since the electrons can no more be treated as massless. We
want to know at this point what the ratio Tγ/Tν is after the annihilation.
This can easily be obtained by using the constancy of comoving entropy for
the photon–electron–positron system, which is sufficiently strongly coupled to
maintain thermodynamic equilibrium.

We need the entropy for the electrons and positrons at T � me, long
before annihilation begins. To compute this note the identity

∫ ∞

0

xn

ex − 1
dx−

∫ ∞

0

xn

ex + 1
dx = 2

∫ ∞

0

xn

e2x − 1
dx =

1
2n

∫ ∞

0

xn

ex − 1
dx ,

whence
∫ ∞

0

xn

ex + 1
dx = (1− 2−n)

∫ ∞

0

xn

ex − 1
dx . (137)

In particular, we obtain for the entropies se, sγ the following relation

se =
7
8
sγ (T � me) . (138)

Equating the entropies for Tγ � me and Tγ � me gives

(Tγa)3
∣

∣

before

[

1 + 2× 7
8

]

= (Tγa)3
∣

∣

after
× 1 ,

because the neutrino entropy is conserved. Therefore, we obtain

(aTγ)|after =
(

11
4

)1/3

(aTγ)|before . (139)
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But (aTν)|after = (aTν)|before = (aTγ)|before, hence we obtain the important
relation

(

Tγ
Tν

)∣

∣

∣

∣

after

=
(

11
4

)1/3

= 1.401 . (140)

B.5 Epoch of Matter–Radiation Equality

In the main parts of these lectures the epoch when radiation (photons and
neutrinos) have about the same energy density as non-relativistic matter (dark
matter and baryons) plays a very important role. Let us determine the red-
shift, zeq, when there is equality.

For the three neutrino and antineutrino flavors the energy density is ac-
cording to (137)

ρν = 3× 7
8
×

(

4
11

)4/3

ργ . (141)

Using
ργ
ρcrit

= 2.47× 10−5h−2
0 (1 + z)4 , (142)

we obtain for the total radiation energy density, ρr,
ρr
ρcrit

= 4.15× 10−5h−2
0 (1 + z)4 . (143)

Equating this to
ρM
ρcrit

= ΩM (1 + z)3 (144)

we obtain
1 + zeq = 2.4× 104ΩMh

2
0 . (145)

Only a small fraction of ΩM is baryonic. There are several methods to
determine the fraction ΩB in baryons. A traditional one comes from the
abundances of the light elements. This is treated in most texts on cosmol-
ogy. (German-speaking readers find a detailed discussion in my lecture notes
[112], which are available in the Internet.) The comparison of the straightfor-
ward theory with observation gives a value in the range ΩBh2

0 = 0.021±0.002.
Other determinations are all compatible with this value. In Sect. 8 we shall
obtain ΩB from the CMB anisotropies. The striking agreement of different
methods, sensitive to different physics, strongly supports our standard big
bang picture of the Universe.

C Inflation and Primordial Power Spectra

C.1 Introduction

The horizon and flatness problems of standard big bang cosmology are so
serious that the proposal of a very early accelerated expansion, preceding
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the hot era dominated by relativistic fluids, appears quite plausible. This
general qualitative aspect of ‘inflation’ is now widely accepted. However, when
it comes to concrete model building the situation is not satisfactory. Since we
do not know the fundamental physics at superhigh energies not too far from
the Planck scale, models of inflation are usually of a phenomenological nature.
Most models consist of a number of scalar fields, including a suitable form for
their potential. Usually there is no direct link to fundamental theories, like
supergravity; however, there have been many attempts in this direction. For
the time being, inflationary cosmology should be regarded as an attractive
scenario, and not yet as a theory.

The most important aspect of inflationary cosmology is that the generation
of perturbations on large scales from initial quantum fluctuations is unavoid-
able and predictable. For a given model these fluctuations can be calculated
accurately, because they are tiny and cosmological perturbation theory can be
applied. And, most importantly, these predictions can be confronted with the
cosmic microwave anisotropy measurements. We are in the fortunate position
to witness rapid progress in this field. The results from various experiments,
most recently from WMAP, give already strong support of the basic predic-
tions of inflation. Further experimental progress can be expected in the coming
years.

C.2 The Horizon Problem and the General Idea of Inflation

I begin by describing the famous horizon puzzle, which is a very serious causal-
ity problem of standard big bang cosmology.

Past and Future Light Cone Distances

Consider our past light cone for a Friedmann spacetime model (Fig. 12). For a
radial light ray the differential relation dt = a(t)dr/(1− kr2)1/2 holds for the
coordinates (t, r) of the metric (19). The proper radius of the past light sphere
at time t (cross section of the light cone with the hypersurface {t = const}) is

lp(t) = a(t)
∫ r(t)

0

dr√
1− kr2 , (146)

where the coordinate radius is determined by

∫ r(t)

0

dr√
1− kr2 =

∫ t0

t

dt′

a(t′)
. (147)

Hence,

lp(t) = a(t)
∫ t0

t

dt′

a(t′)
. (148)
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lf (t')

t

lp(t)

trec

t'

t    0~

phys.distance

Fig. 12. Spacetime diagram illustrating the horizon problem

We rewrite this in terms of the redhift variable. From 1 + z = a0/a we get
dz = −(1 + z)Hdt, so

dt

dz
= − 1

H0(1 + z)E(z)
, H(z) = H0E(z) .

Therefore,

lp(z) =
1

H0(1 + z)

∫ z

0

dz′

E(z′)
. (149)

Similarly, the extension lf (t) of the forward light cone at time t of a very
early event (t � 0, z � ∞) is

lf (t) = a(t)
∫ t

0

dt′

a(t′)
=

1
H0(1 + z)

∫ ∞

z

dz′

E(z′)
. (150)

For the present Universe (t0) this becomes what is called the particle horizon
distance

Dhor = H−1
0

∫ ∞

0

dz′

E(z′)
, (151)

and gives the size of the observable Universe.
Analytical expressions for these distances are only available in special

cases. For orientation we consider first the Einstein–de Sitter model (K =
0, ΩΛ = 0, ΩM = 1), for which a(t) = a0(t/t0)2/3 and thus

Dhor = 3t0 = 2H−1
0 , lf(t) = 3t ,

lp
lf

=
(

t0
t

)1/3

− 1 =
√

1 + z − 1 . (152)
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For a flat Universe a good fitting formula for cases of interest is (Hu and
White)

Dhor � 2H−1
0

1 + 0.084 lnΩM√
ΩM

. (153)

It is often convenient to work with ‘comoving distances’, by rescaling dis-
tances referring to time t (like lp(t), lf (t)) with the factor a(t0)/a(t) = 1 + z
to the present. We indicate this by the superscript c. For instance,

lcp(z) =
1
H0

∫ z

0

dz′

E(z′)
. (154)

This distance is plotted in Fig. 11 of Appendix A as Dcom(z). Note that for
a0 = 1 : lcf (η) = η, lcp(η) = η0 − η. Hence (150) gives the following relation
between η and z:

η =
1
H0

∫ ∞

z

dz′

E(z′)
.

The Number of Causality Distances on the Cosmic Photosphere

The number of causality distances at redshift z between two antipodal emis-
sion points is equal to lp(z)/lf(z), and thus the ratio of the two integrals on
the right of (149) and (150). We are particularly interested in this ratio at the
time of last scattering with zrec � 1100. Then we can use for the numerator a
flat Universe with non-relativistic matter, while for the denominator we can
neglect in the standard hot big bang model ΩK andΩΛ. A reasonable estimate
is already obtained by using the simple expression in (152), i.e., z1/2rec ≈ 30. A
more accurate evaluation would increase this number to about 40. The length
lf (zrec) subtends an angle of about 1 degree (exercise). How can it be that
there is such a large number of causally disconnected regions we see on the
microwave sky all having the same temperature? This is what is meant by
the horizon problem and was a troublesome mystery before the invention of
inflation.

Vacuum-Like Energy and Exponential Expansion

This causality problem is potentially avoided, if lf (t) would be increased in
the very early Universe as a result of different physics. If a vacuum-like energy
density would dominate, the Universe would undergo an exponential expan-
sion. Indeed, in this case the Friedmann equation is

(

ȧ

a

)2

+
k

a2
=

8πG
3
ρvac, ρvac � const , (155)
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and has the solutions

a(t) ∝
⎧

⎨

⎩

cosh Hvact : k = 1
eHvact : k = 0

sinh Hvact : k = 1 ,
(156)

with

Hvac =

√

8πG
3
ρvac . (157)

Assume that such an exponential expansion starts for some reason at time
ti and ends at the reheating time te, after which standard expansion takes
over. From

a(t) = a(ti)eHvac(t−ti) (ti < t < te) , (158)

for k = 0 we get

lcf (te) � a0

∫ te

ti

dt

a(t)
=

a0

Hvaca(ti)
(

1− e−HvacΔt
) � a0

Hvaca(ti)
,

where Δt := te − ti. We want to satisfy the condition lcf (te) � lcp(te) � H−1
0

(see (153)), i.e.,

aiHvac � a0H0 ⇔ ai
ae
� a0H0

aeHvac
(159)

or
eHvacΔt � aeHvac

a0H0
=
Heqaeq
H0a0

Hvacae
Heqaeq

.

Here, eq indicates the values at the time teq when the energy densities of non-
relativistic and relativistic matter were equal. We now use the Friedmann
equation for k = 0 and w := p/ρ = const. From (25) it follows that in this
case

Ha ∝ a−(1+3w)/2 ,

and hence we arrive at

eHvacΔt �
(

a0

aeq

)1/2 (

aeq
ae

)

= (1 + zeq)1/2
(

Te
Teq

)

= (1 + zeq)−1/2TPl
T0

Te
TPl

,

(160)
where we used aT = const. So the number of e-folding periods during the
inflationary period, N = HvacΔt, should satisfy

N � ln
(

TPl
T0

)

− 1
2

ln zeq + ln
(

Te
TPl

)

� 70 + ln
(

Te
TPl

)

. (161)

For a typical GUT scale, Te ∼ 1014 GeV , we arrive at the condition N � 60.
Such an exponential expansion would also solve the flatness problem, an-

other worry of standard big bang cosmology. Let me recall how this problem
arises.
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The Friedmann equation (101) can be written as

(Ω−1 − 1)ρa2 = − 3k
8πG

= const. ,

where

Ω(t) :=
ρ(t)

3H2/8πG
(162)

(ρ includes vacuum energy contributions). Thus

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρa2
. (163)

Without inflation we have

ρ = ρeq

(aeq
a

)4

(z > zeq) , (164)

ρ = ρ0

(a0

a

)3

(z < zeq) . (165)

According to (26) zeq is given by

1 + zeq =
ΩM
ΩR

� 104 Ω0h
2
0 . (166)

For z > zeq we obtain from (163) and (164)

Ω−1 − 1 = (Ω−1
0 − 1)

ρ0a
2
0

ρeqa2
eq

ρeqa
2
eq

ρa2
= (Ω−1

0 − 1)(1 + zeq)−1

(

a

aeq

)2

(167)

or

Ω−1− 1 = (Ω−1
0 − 1)(1 + zeq)−1

(

Teq
T

)2

� 10−60(Ω−1
0 − 1)

(

TPl
T

)2

. (168)

Let us apply this equation for T = 1 MeV, Ω0 � 0.2−0.3. Then | Ω−1 |≤
10−15, thus the Universe was already incredibly flat at modest temperatures,
not much higher than at the time of nucleosynthesis.

Such a fine tuning must have a physical reason. This is naturally provided
by inflation, because our observable Universe could originate from a small
patch at te. (A tiny part of the Earth surface is also practically flat.)

Beside the horizon scale lf (t), the Hubble length H−1(t) = a(t)/ȧ(t) plays
also an important role. One might call this the “microphysics horizon”, be-
cause this is the maximal distance microphysics can operate coherently in
one expansion time. It is this length scale which enters in basic evolution
equations, such as the equation of motion for a scalar field (see (175) below).

We sketch in Figs. 13–15 the various length scales in inflationary models,
that is for models with a period of accelerated (e.g., exponential) expansion.
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lp(t)

phys.distance

lf (t)

trec

ti

t

tR

lf (t)>>lp(t)

0

infl.
period

Fig. 13. Past and future light cones in models with an inflationary period

From these it is obvious that there can be – at least in principle – a causal
generation mechanism for perturbations. This topic will be discussed in great
detail in later parts of these lectures.

Exponential inflation is just an example. What we really need is an early
phase during which the comoving Hubble length decreases (Fig. 15). This
means that (for Friedmann spacetimes)

(

H−1(t)/a
)·
< 0 . (169)

t

trec

tR

ti

H-1(t)

H-1(t)

d: phys. distance
    (wavelength)

lf 
(t)  (causality horizon)

phys.distance

Fig. 14. Physical distance (e.g., between clusters of galaxies) and Hubble distance,
and causality horizon in inflationary models
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tR

t

dc

H-1(t)

H-1(t)

comoving distance

Fig. 15. Part of Fig. 14 expressed in terms of comoving distances

This is the general definition of inflation; equivalently, ä > 0 (accelerated
expansion). For a Friedmann model (107) tells us that

ä > 0⇔ p < −ρ/3 . (170)

This is, of course, not satisfied for ‘ordinary’ fluids.
Assume, as another example, power-law inflation: a ∝ tp. Then ä > 0 ⇔

p > 1.

C.3 Scalar Field Models

Models with p < −ρ/3 are naturally obtained in scalar field theories. Most
of the time we shall consider the simplest case of one neutral scalar field ϕ
minimally coupled to gravity. Thus the Lagrangian density is assumed to be

L =
M2
pl

16π
R[g]− 1

2
∇μϕ∇μϕ− V (ϕ , (171)

where R[g] is the Ricci scalar for the metric g. The scalar field equation is

�ϕ = V,ϕ , (172)

and the energy–momentum tensor in the Einstein equation

Gμν =
8π
M2
Pl

Tμν (173)

is
Tμν = ∇μϕ∇νϕ+ gμνLϕ (174)

(Lϕ is the scalar field part of (171)).
We consider first Friedmann spacetimes. Using previous notation, we ob-

tain from (85)
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√−g = a3√γ, �ϕ =
1√−g∂μ(

√−ggμν∂νϕ) = − 1
a3

(a3ϕ̇)· +
1
a2
 γϕ .

The field equation (172) becomes

ϕ̈+ 3Hϕ̇− 1
a2
 γϕ = −V,ϕ(ϕ) . (175)

Note that the expansion of the Universe induces a ‘friction’ term. In this basic
equation one also sees the appearance of the Hubble length. From (174) we
obtain for the energy density and the pressure of the scalar field

ρϕ = T00 =
1
2
ϕ̇2 + V +

1
2a2

(∇ϕ)2 , (176)

pϕ =
1
3
T ii =

1
2
ϕ̇2 − V − 1

6a2
(∇ϕ)2 . (177)

(Here, (∇ϕ)2 denotes the squared gradient on the 3-space (Σ, γ).)
Suppose the gradient terms can be neglected, and that ϕ is during a certain

phase slowly varying in time, then we get

ρϕ ≈ V, pϕ ≈ −V . (178)

Thus pϕ ≈ −ρϕ, as for a cosmological term.
Let us ignore for the time being the spatial inhomogeneities in the previous

equations. Then these reduce to

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0 ; (179)

ρϕ =
1
2
ϕ̇2 + V, pϕ =

1
2
ϕ̇2 − V . (180)

Beside (179) the other dynamical equation is the Friedmann equation

H2 +
K

a2
=

8π
3M2

Pl

[

1
2
ϕ̇2 + V (ϕ)

]

. (181)

Equations (179) and (181) define a non-linear dynamical system for the dy-
namical variables a(t), ϕ(t), which can be studied in detail (see, e.g., [113]).

Let us ignore the curvature term K/a2 in (181). Differentiating this equa-
tion and using (179) shows that

Ḣ = − 4π
M2
Pl

ϕ̇2 . (182)

Regard H as a function of ϕ, then

dH

dϕ
= − 4π

M2
Pl

ϕ̇ . (183)
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This allows us to write the Friedmann equation as

(

dH

dϕ

)2

− 12π
M2
Pl

H2(ϕ) = −32π2

M4
Pl

V (ϕ) . (184)

For a given potential V (ϕ) this is a differential equation for H(ϕ). Once this
function is known, we obtain ϕ(t) from (183) and a(t) from (182).

C.4 Power-Law Inflation

We now proceed in the reverse order, assuming that a(t) follows a power law

a(t) = const. tp . (185)

Then H = p/t, so by (182)

ϕ̇ =
√

p

4π
MPl

1
t
, ϕ(t) =

√

p

4π
MPl ln(t) + const. ,

hence

H ∝ exp
(

−
√

4π
p

ϕ

MPl

)

. (186)

Using this in (184) leads to an exponential potential

V (ϕ) = V0 exp
(

−4
√

π

p

ϕ

MPl

)

. (187)

C.5 Slow-Roll Approximation

An important class of solutions is obtained in the slow-roll approximation
(SLA), in which the basic (179) and (181) can be replaced by

H2 =
8π

3M2
Pl

V (ϕ) , (188)

3Hϕ̇ = −V,ϕ . (189)

A necessary condition for their validity is that the slow-roll parameters

εV (ϕ) : =
M2
Pl

16π

(

V,ϕ
V

)2

, (190)

ηV (ϕ) : =
M2
Pl

8π
V,ϕϕ
V

(191)

are small:
εV � 1, | ηV |� 1 . (192)
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These conditions, which guarantee that the potential is flat, are, however, not
sufficient.

The simplified system (188) and (189) implies

ϕ̇2 =
M2
Pl

24π
1
V

(V,ϕ)2 . (193)

This is a differential equation for ϕ(t).
Let us consider potentials of the form

V (ϕ) =
λ

n
ϕn . (194)

Then (193) becomes

ϕ̇2 =
n2M2

Pl

24π
1
ϕ2
V . (195)

Hence, (188) implies
ȧ

a
= − 4π

nM2
Pl

(ϕ2)· ,

and so

a(t) = a0 exp
[

4π
nM2

Pl

(ϕ2
0 − ϕ2(t))

]

. (196)

We see from (195) that 1
2 ϕ̇

2 � V (ϕ) for

ϕ� n

4
√

3π
MPl . (197)

Consider first the example n = 4. Then (195) implies

ϕ̇

ϕ
=

√

λ

6π
MPl ⇒ ϕ(t) = ϕ0 exp

(

−
√

λ

6π
MPl t

)

. (198)

For n 	= 4:

ϕ(t)2−n/2 = ϕ
2−n/2
0 + t

(

2− n
2

)

√

nλ

24π
M

3−n/2
Pl . (199)

For the special case n = 2 this gives, using the notation V = 1
2m

2ϕ2, the
simple result

ϕ(t) = ϕ0 − mMPl

2
√

3π
t . (200)

Inserting this into (196) provides the time dependence of a(t).
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C.6 Why Did Inflation Start?

Attempts to answer this and related questions are very speculative indeed. A
reasonable direction is to imagine random initial conditions and try to un-
derstand how inflation can emerge, perhaps generically, from such a state of
matter. A. Linde first discussed a scenario along these lines which he called
chaotic inflation. In the context of a single scalar field model he argued that
typical initial conditions correspond to 1

2 ϕ̇
2 ∼ 1

2 (∂iϕ)2 ∼ V (ϕ) ∼ 1 (in Planck-
ian units). The chance that the potential energy dominates in some domain of
size > O(1) is presumably not very small. In this situation inflation could be-
gin and V (ϕ) would rapidly become even more dominant, which ensures con-
tinuation of inflation. Linde concluded from such considerations that chaotic
inflation occurs under rather natural initial conditions. For this to happen,
the form of the potential V (ϕ) can even be a simple power law of the form
(194). Many questions remain, however, open.

The chaotic inflationary Universe will look on very large scales – much
larger than the present Hubble radius – extremely inhomogeneous. For a re-
view of this scenario I refer to [114]. A much more extended discussion of
inflationary models, including references, can be found in [107].

C.7 Inflation and Primordial Power Spectra

For a detailed derivation of the primordial power spectra that are generated
as a result of quantum fluctuations during an inflationary period, I refer to
my Combo-lectures [63].

The main steps are quite straightforward. First, one studies classical per-
turbations of the scalar field and the metric. For the scalar field one can
reduce the problem to a Klein–Gordon equation with a time-dependent mass
for a suitable gauge invariant perturbation amplitude. The quantization of
this field follows standard rules. The quantization of the scalar part of the
metric (Bardeen potentials) is then also fixed. Of particular interest is the
power spectrum, PR(k), of the so-called “curvature perturbation amplitude”
R. This is proportional to the Fourier transform of the two-point correlation
function. More precisely, if

R(η,x) = (2π)−3/2

∫

Rk(η)eik·xd3k ,

then

〈0|RkR†
k′ |0〉 =:

2π2

k3
PR(k)δ(3)(k − k′) .

In the slow-roll approximation, this can be worked out explicitly, with the
result

PR(k) =
4
M4
Pl

H4

(dH/dϕ)2

∣

∣

∣

∣

k=aH

(201)

� 128π
3

1
M6
Pl

U3

(U,ϕ)2

∣

∣

∣

∣

k=aH

. (202)
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The expression on the right is evaluated at horizon crossing k = aH .
It is even simpler to determine the power spectrum of gravitational waves

(tensor modes). In the same approximation one finds

Pg(k) =
16
π

H2

M2
Pl

∣

∣

∣

∣

k=aH

, H2 � 8π
3M2

Pl

U . (203)

For a given inflationary model, the power spectra are uniquely determined.
There is one delicate question, namely why we have chosen in the definition

of the power spectrum the Fock state, relative to modes that at very short
distances (k/aH → ∞) approach the plane waves of the gravity free case
with positive frequences. A priori, the initial state could contain all kinds
of excitations. These would, however, be redshifted away by the enormous
inflationary expansion, and the final power spectrum on interesting scales,
much larger than the Hubble length, should be largely independent of possible
initial excitations.

For a comparison with observations the power index, ns, for scalar pertur-
bations, defined by

ns − 1 :=
d lnPR(k)

d ln k
(204)

is of particular interest. In terms of the slow-roll parameters (190) and (191)
it is given by

ns − 1 = −6εU + 2ηU , (205)

whence the spectrum is nearly scale-free. For the ratio r of the amplitudes of
Pg and PR one finds r = 16εU . The WMAP data match the basic inflationary
predictions, and are even well fit by the simplest model U ∝ ϕ2.

D Quintessence Models

In quintessence models the exotic missing energy with negative pressure is
again described by a scalar field, whose potential is chosen such that the
energy density of the homogeneous scalar field adjusts itself to be compa-
rable to the matter density today for quite generic initial conditions, and
is dominated by the potential energy. This ensures that the pressure be-
comes sufficiently negative. It is not simple to implement this general idea
such that the model is phenomenologically viable. For instance, the success
of BBN should not be spoiled. CMB and large-scale structure impose other
constraints. One also would like to understand why cosmological acceleration
started at about z ∼ 1, and not much earlier or in the far future. There have
been attempts to connect this with some characteristic events in the post-
recombination Universe. On a fundamental level, the origin of a quintessence
field that must be extremely weakly coupled to ordinary matter remains in
the dark.
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Let me briefly describe a simple model of this kind [115]. For the dynamics
of the scalar field φ we adopt an exponential potential

V = V0 e
−λφ/MP .

Such potentials often arise in Kaluza–Klein and string theories. Matter is
described by a fluid with a baryotropic equation of state: pf = (γ − 1)ρf .

For a Friedmann model with zero space-curvature, one can cast the ba-
sic equations into an autonomous two-dimensional dynamical system for the
quantities

x(τ) =
κφ̇√
6H

, y(τ) =
κ
√
V√

3H
,

where
H = ȧ/a, τ = log a, κ2 = 8πG

(a(t) is the scalar factor). This system of autonomous differential equations
has the form

dx

dτ
= f(x, y;λ, γ),

dy

dτ
= g(x, y;λ, γ) ,

where f and g are polynomials in x and y of third degree, which depend
parametrically on λ and γ. The density parameters Ωφ and Ωf for the field φ
and the fluid are given by

Ωφ = x2 + y2, Ωφ +Ωf = 1 .

The interesting fact is that, for a large domain of the parameters λ, γ, the
phase portrait has qualitatively the shape of Fig. 16. Therefore, under generic

Fig. 16. Phase plane for γ = 1, λ = 3. The late-time attractor is the scaling solution
with x = y = 1/

√
6 (from [115])
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initial conditions, there is a global attractor (a node or a spiral) for which
Ωφ = 3γ/λ2. For this “scaling solution” Ωφ/Ωf remains fixed, and for any
other solution this ration is finally approached.

Unfortunately, if we set pφ = (γφ−1) we find that γφ = 2x2/(x2 +y2), and
this is equal to γ for the scaling solution. Thus this does not correspond to a
quintessence solution. Moreover, the condition that ρφ should be subdominant
during nucleosynthesis implies a small value for Ωφ.

A more successful example of a so-called “tracker potential”, with the prop-
erty that the scalar field approaches a common evolutionary path from a wide
range of initial conditions, has the form of an inverse power law, V (φ) = V0/φ

α

[117]. There is an extended literature on the subject. References [116]–[121]
give a small selection of important early papers. For a recent review that de-
scribes also other scalar field models, see [122]. I emphasize once more that
on the basis of the vacuum energy problem we would expect a huge additive
constant for the quintessence potential that would destroy the whole picture.
Thus, assuming for instance that the potential approaches zero as the scalar
field goes to infinity has (so far) no basis. Apart of this and other fine tun-
ing problems, I doubt that this kind of phenomenological models – with no
natural field theoretical justification – will lead to an understanding of dark
energy at a deeper level.

Fortunately, future more precise observations will allow us to decide
whether the presently dominating exotic energy density satisfies p/ρ = −1
or whether this ratio is somewhere between −1 and −1/3. Recent studies
(see [71, 72], and references therein), which make use of existing cosmological
data, do not yet support quintessence. The restrictions for a possible redshift
dependence are, so far, rather weak.

If convincing evidence for such a dependence should be established, we
will not be able to predict the distant future of the Universe. Eventually, the
dark energy density may perhaps become negative. This illustrates that we
may never be able to predict the asymptotic behavior of the most grandiose
of all dynamical systems. Other conclusions are left to the reader.
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16. G.E. Lemâıtre, Ann. Soc. Sci. Brux. A 47, 49 (1927). 331
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1 Quantum Theory

Atomic systems exhibit features that are in conflict with the laws of classi-
cal mechanics: certain quantities (bound state energies, angular momentum)
can take only discrete values in individual measurements; the probabilites
for the outcome of measurements of position and momentum are subject to
the uncertainty relation, limiting their joint precision by Planck’s constant
� ≈ 10−34Js; and there may occur constructive or destructive interference be-
tween the probability amplitudes associated with two states, as demonstrated
by the “double-slit” experiment (superposition principle). As was experimen-
tally confirmed in recent years, composed systems possess entangled states, in
which measurements in the subsystems show nonlocal correlations (violation
of Bell’s inequalities) that exclude any classical description in terms of “local
hidden variables” (= limited knowledge of initial conditions in deterministic
local dynamics). These characteristics are suppressed when only a subsystem
is observed. The related effect, that a quantum system may appear classical
as a result of its unmonitored interaction with the environment, is known as
decoherence.

Quantum theory explains these features by describing quantum states as
vectors (or density matrices) in a Hilbert space. In quantum mechanics, these
vectors are often represented as wave functions, which are interpreted as prob-
ability amplitudes in position space or in momentum space, although different
but equivalent representations are possible. When there is dynamical parti-
cle production or annihilation, however, it is more convenient to abandon
this description in favor of a more abstract one, e.g., in terms of asymp-
totic multi-particle scattering states characterized by representations of the
Poincaré group in a relativistic setting.

Just like the time evolution of a classical state is determined by the
laws of Newtonian dynamics once the forces are specified, the evolution of a
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quantum state is determined by the Schrödinger equation once the Hamilto-
nian operator is specified.

The conjunction of the principles of quantum mechanics with the principle
of locality and the symmetries of special relativity, is called quantum field
theory (QFT). Its application to Maxwell’s theory of electrodynamics gives
rise to quantum electrodynamics (QED). Generalizations of QED are non-
abelian gauge theories (Yang–Mills theory, quantum chromodynamics (QCD),
the standard model of elementary particles). In QFT, the observables are no
longer the positions of individual particles, but rather their energy or charge
densities and, as derived concepts, cross sections in scattering processes. Their
quantitative prediction is the prominent aim of a realistic QFT model.

2 Field Theory

Originating from hydrodynamics (describing the motion of fluids and gases
in terms of velocity and density fields), the classical concept of fields had its
triumph in Maxwell’s theory of electrodynamics. The electromagnetic fields
are local agents which mediate interactions among charged particles, thus en-
abling the passage from Coulomb’s “action at a distance” to local interactions.
At the same time, fields are carriers of energy and momentum, contributing
to the balance of the dynamical system including the charged particles.

The dynamics of classical fields is most efficiently described in terms of
an action functional (the integral over a Lagrangean density) from which the
equations of motion are obtained, and from which energy, momentum and
charge densities are derived by canonical prescriptions.

In QFT, the quantum mechanical superposition principle and the causal-
ity principle of special relativity require that also particles are represented by
fields. More precisely, while the observables (charge or energy densities) are
expressed in terms of fields which are understood as “defining the model”,
particles arise as spectral features of the energy-momentum operator, or as
features of scattering states at asymptotic times, related to the localized dis-
tribution of energy-momentum and charge. In the perturbative approach, the
local interactions are specified by polynomial expressions (couplings) in the
fields, representing elementary processes. Their precise form is strongly con-
strained by symmetry principles, most prominently the “minimal coupling”
of gauge theories, and by the condition of renormalizability.

The latter refers to the fact that perturbative computations in quantum
field theory produce divergent results due to the large quantum fluctuations
at small distances (UV singularities). These arise formally because a QFT is
treated as a system of “infinitely many coupled harmonic oscillators”. Renor-
malization is a systematic treatment, extracting finite quantities from the
theory, to be compared with measurement. A simple criterium (“power count-
ing”) separates models where this works, from those where it does not.
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A particularly useful tool is the passage to “imaginary time” (Wick ro-
tation) which is possible, thanks to spectral and covariance principles in flat
spacetime. Taking advantage of the resulting formal similarity of the resulting
Euclidean QFT with classical four-dimensional statistical mechanics, power-
ful functional methods (path integrals, lattice approximations, constructive
QFT, non-perturbative renormalization) have been developed allowing to go
far beyond perturbation theory.

3 Gauge Theory

Gauge theory is the name for (quantum) field theories with a specific type
of interaction determined by the principle of gauge invariance. It appears to
be the only consistent way to describe quantum interactions involving vector
particles (gauge bosons).

Gauge symmetry was originally observed within Maxwell’s theory of clas-
sical electrodynamics as an ambiguity, related to the artificial introduction of
unobservable potentials in order to solve two of Maxwell’s four equations. Only
in Dirac’s equation for QED, this symmetry reveals its geometric interpreta-
tion as a local complex phase ambiguity for the charged (electron) field, which
does not affect observable quantities such as current densities (Gauge Invari-
ance). Promoted to a principle, Gauge Invariance turned out to be a most
fruitful and universal symmetry paradigm, determining the detailed structure
of almost all couplings in the standard model of elementary particles.

For this purpose, the local complex phase has to be replaced by a space
time dependent unitary matrix taking values in the model-specific gauge group
(= U(1)× SU(2)L × SU(3)c in the standard model). Gauge transformations
express the absence of a global comparability of internal degrees of freedom
at different spacetime points.

The geometric interpretation of gauge symmetry is most natural in mathe-
matical terms of vector bundles. Charged fields are sections in a vector bundle
on which the gauge group acts in a given representation. The gauge potentials
define a parallel transport on this bundle, whose curvature can be identified
with the generalized “electric” and “magnetic” fields. The associated covari-
ant derivative of the charged fields gives rise to “minimal couplings”, through
which the gauge potentials mediate the interactions between the charged par-
ticles. Unlike QED whose gauge group U(1) is abelian, the gauge fields exhibit
a self-interaction if the gauge group is non-abelian. The quantum field theory
of this self-interaction (without other charged particles) is called Yang–Mills
theory.

Non-abelian gauge theory poses several challenging problems to QFT: (1)
the observed mass of the intermediate vector bosons (the particles associated
with the gauge potentials) of the weak interaction requires a mechanism of
mass creation for these particles (presumably through a Higgs field); (2) in
perturbation theory, the covariant quantization and elimination of redundant
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degrees of freedom and unphysical states requires an ingenious cohomological
(BRST) method; and (3) the ground state of QCD in the confining phase is
completely unknown, and the hadronic particle states must be parametrized
by suitable phenomenological structure functions which so far cannot be de-
rived from the theory.

In order to attack (3), lattice gauge theory takes advantage of the natural
geometric interpretation in order to formulate a covariant UV and IR regular-
ized approximation, which is accessible by computerized numerical simulations
and can be used to study the behavior when the cutoffs are removed.

4 The Standard Model

The standard model of elementary particles is the state-of-the-art theory of
all fundamental interactions except gravity. It combines huge experimental
evidence, comprising both particle spectroscopy and detailed measurement of
scattering cross sections, with ingenious theoretical modeling on the basis of
symmetry principles.

Roughly speaking, the standard model comprises the electroweak inter-
action (with typical particle lifetimes ∼ 10−6 − 10−10 sec) and the strong
interaction (with typical particle lifetimes ∼ 10−23 sec or less).

At particle energies well below 100 GeV, the long-ranged electromag-
netic interaction with the massless photon mediating the interaction between
charged particles appears independent from the short-ranged weak interac-
tion, mediated by massive W (charged) and Z (neutral) bosons. The weak
interaction is distinguished from all other interactions by its maximal viola-
tion of parity (left-right) symmetry. Above 100 GeV, the Z boson and the
photon appear as different combinations of the two neutral gauge bosons of
the electroweak gauge group U(1)× SU(2)L, one of which has acquired mass
through the Higgs mechanism as follows. The (postulated) scalar Higgs field
has a quartic self-interaction symmetric around zero, but its potential energy
has an orbit of minima away from zero. The field fluctuates around this min-
imizing orbit; the fluctuations along this orbit conspire with the gauge fields
to give a mass to some of them. With suitable fixing of the gauge such as
required in perturbation theory, the vacuum expectation value of the Higgs
field becomes non-zero, leading to what is called spontaneous symmetry break-
down. In this way, three of the four electroweak gauge bosons acquire a mass,
without explicit mass terms that would break the gauge invariance. Likewise,
massless Fermi fields (leptons and quarks) will acquire mass through Yukawa
couplings to the Higgs field.

The strong interaction (QCD) has the non-abelian gauge group SU(3)c
with the corresponding internal degree of freedom called “color”. At the fun-
damental level, its gauge bosons (gluons) mediate the interactions among the
hadronic constituents (quarks). However, due to the strength of the interac-
tion, the ground state of QCD cannot be viewed as a “small” perturbation of
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that of the corresponding free particles. Instead, its (unknown) involved struc-
ture is supposed to lead to the effect of confinement, observed at sufficiently
low energies: quarks and gluons do not exist as isolated particles in asymp-
totic scattering states, but manifest themselves only as color-neutral hadronic
bound states or “jets”. On the other hand, at high energies (corresponding to
small distances), the strong interaction becomes weak due to renormalization
effects leading to the screening of color charges by vacuum polarization. In
this regime (asymptotic freedom, experimentally accessible in deep inelastic
scattering processes) quarks and gluons can be treated perturbatively.

Of all the particles mentioned, only the Higgs particle has not yet been
detected in accelerator experiments.

The model input for the standard model consists of the gauge groups
along with their representations for the charged fields, and 19 free numerical
parameters: two coupling constants for the electroweak sector (or equivalenty,
the unit of electric charge and the Weinberg angle), the masses of the W
and Higgs bosons (or equivalently, the two parameters describing the Higgs
potential), the strong coupling constant along with a parameter related to
chiral symmetry breaking in QCD, and finally 13 (or more, if neutrinos are
massive) coefficients of Yukawa couplings (mass matrices). Besides, at least
at the present time, one should also regard the empirical structure functions
phenomenologically describing hadronic states of QCD as additional “free
parameters”.

Because this amount of freedom is often considered as unsatisfactory for a
fundamental theory, grand unified theories (GUT) or supersymmetric exten-
sions attempt to reduce it with the assumption of extended symmetries, which
are broken at present energies. There is at present no experimental evidence in
favor of such theories “beyond the Standard Model”, while physical facts like
the lifetime of the proton exclude non-supersymmetric scenarios. The next
generation of experiments (LHC) is expected to give some clear signals.

5 Symmetries

Symmetries play several (distinct and related) important roles within the
paradigms of modern physics. Conceptually, one distinguishes “active” sym-
metry transformations which relate different configurations or states of the
same physical system from “passive” symmetry transformations which de-
scribe the same configuration or state in terms of different references (frames,
calibrations, gauges). On the other hand, one distinguishes symmetries of
space and time (“external symmetries”) from symmetries of other degrees of
freedom (“internal symmetries”, e.g., different isospin or color values in the
standard model).

Relativity in the broadest sense is the expectation or postulate that the
laws of nature are invariant under (certain) active and passive transforma-
tions. The passive point of view strongly constrains the possible form of these



404 K.-H. Rehren and E. Seiler

laws (“covariance”); the active point of view allows to make predictions about
the outcome of different experiments and to relate different measurable quan-
tities among each other.

Depending on the realm of physics one has in mind, the laws of nature ex-
hibit different external symmetries: Newtonian Mechanics is Galilei invariant,
Maxwell’s theory is Poincaré invariant (special relativity, containing Galilei
invariance as the limiting case when velocities are small compared to the
speed of light), and gravity is diffeomorphism invariant (general relativity).
The most important internal symmetries are gauge symmetries, which in par-
ticular largely determine the structure of (almost) all interactions in the stan-
dard model.

Supersymmetry is a generalized symmetry concept, uniting internal and
external symmetries. Because of a pertinent No-Go theorem, it cannot be
realized as a group of transformations, but only as a graded Lie algebra of
“infinitesimal transformations”. If Supersymmetry is realized in nature, it
must be broken (i.e., not realized in the physical states). Its detection in the
next generation of accelerators would, among other benefits (“dark matter”
in the universe?), shed new light on a possible grand unified theory beyond
the standard model.

Symmetries may be broken in various ways. Spontaneous symmetry break-
ing is the phenomenon that the ground state may not exhibit the full symme-
try of the field algebra and its dynamics. On the other hand, one speaks of
explicit breaking if either the algebra itself or its dynamics are disturbed in
an asymmetric way.

6 Spacetime and General Relativity

The universality of the speed of light, predicted by Maxwell’s theory of elec-
trodynamics and verified in numerous experiments, requires a revision of
the Newtonian concepts of space and time. The resulting Theory of special
relativity states that all laws of physics take the same form when referred to
inertial frames of reference. This implies the relativity of length and time mea-
surements, and that mass is a form of bound energy that is convertible into
other forms (e.g., particle production). Empirically confirmed to the extent
that no accelerator would work without it, special relativity is at the basis of
every fundamental theory of physics.

General relativity is the accepted dynamical field theory of Gravitation. It
comprises both the motion of massive bodies in a gravitational field, and the
dynamics of the gravitational field itself. The principle of equivalence asserts
the approximate validity of special relativity even in gravitational fields. By
introducing a curvature of spacetime, the general theory incorporates gravity;
in particular, the trajectories of free-falling massive bodies are geodesics of
the curved spacetime, thus explaining the observed equality of gravitational
and inertial mass.
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The dynamics of the gravitational field relates the spacetime curvature
to the distribution of energy and momentum of matter and radiation. The
field equations obey the principle of general relativity (“diffeomorphism in-
variance”). In the absence of matter they have special solutions such as grav-
itational waves or black holes.

Vast simplifying symmetry assumptions (homogeneity and isotropy) about
the large-scale structure of the universe reduce the dynamical degrees of free-
dom of the gravitational field to a single “scale parameter” a(t). Its coupling to
the matter content of the universe and to itself gives rise to the Friedmann–
Lemâıtre–Robertson–Walker cosmology, which explains the observed Hubble
expansion and cosmic microwave background as the aftermath of a “ Big Bang”
at the beginning of time. While widely accepted, this standard model of Cos-
mology still has several problems, for the solutions of which various extensions
(“inflation”, “dark energy”) are presently under discussion.

Although the theory is not consistent with quantum theory, the physical
effects of this conflict are negligible except at very small length scales (the
Planck length lP ≈ 10−35 m). One of the greatest challenges in fundamental
physics is the formulation of a quantum theory of gravity, including a quantum
spacetime structure. Some approaches (including loop quantum gravity) are
footed on the fact that at least formally the theory of general relativity shares
many aspects of gauge theories (with respect to external rather than internal
symmetries). Other approaches (such as string theory) pursue more radical
ideas.
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Action at a distance. Instantaneous effects of distant objects onto each
other not mediated by a physical support, such as Newton’s law of gravity. In
relativistic physics it is replaced by local interactions.

Action functional (Lagrangian). The integral over the Lagrangian den-
sity, usually the difference between kinetic and potential energy. It determines
the classical equations of motion by a stationarity condition; it is also the main
ingredient of the path integral (functional integral, generating functional).

Asymptotic freedom. The decrease to zero of the strength of the inter-
action with decreasing distance, which is found in the perturbative quantiza-
tion of non-abelian gauge theories due to “antiscreening effects”. Physically it
means that at very high energies the quanta behave almost like free particles.

Bekenstein entropy. The entropy formally assigned to a black hole is
proportional to the area of its horizon. Its derivation in terms of microscopic
degrees of freedom is considered a test for every theory of quantum gravity.

Bell’s inequalities. Inequalities that must hold among expectation values
of localized classical quantities. Their experimentally confirmed violation (in
agreement with quantum mechanics) proves that the observed correlations
cannot be reproduced by a local classical theory.

Black holes. Solutions of the gravitational field equations in the vacuum,
exhibiting an event horizon (“nothing, not even light, can escape”). Stellar
black holes can form around collapsing stars of sufficient mass, supermassive
black holes are believed to exist in the centre of galaxies.

Big Bang. Sloppy name for the singularity met when the cosmologi-
cal evolution is extrapolated backwards in time. Has been coined after the
Hubble’s observation of cosmic expansion and became the dominant
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cosmological paradigm after the observation by Penzias and Wilson of the
(predicted) microwave background radiation.

Bosons. Particles obeying the Bose–Einstein statistics requiring symme-
try of the state vector under interchange of particles of the same type. In
quantum field theory described by Bose fields which commute at spacelike
separation; they necessarily have integer spin.

BRST method (after Becchi, Rouet, Stora, and Tyutin). A two-step
prescription to quantize non-abelian gauge theories. One first quantizes an
auxiliary theory with redundant degrees of freedom, which can be done by
standard methods but introduces unphysical states. From this, one can de-
scend to the physical theory.

Confinement. The empirical fact that quarks and gluons cannot be ob-
served as asymptotic particles; it is suggested by the increase of the coupling
with distance in quantum chromodynamics and is realized in the lattice for-
mulation of the theory.

Constructive quantum field theory. The attempt to construct quan-
tum field theoretical models in a mathematically rigorous form (not based on
perturbation theory). In the case of gauge theories, the main approach is via
a Euclidean lattice theory used as an approximation to continuum QFT.

Cosmic microwave background. The 2.7 K thermal radiation filling the
Universe. It is predicted by the Big-Bang cosmology as the remnant of the
hot photon gas coupled to charged matter in early cosmological times, cooled
down by the Hubble expansion after decoupling following the formation of
(neutral) atoms.

Covariant derivative. The prescription generalizing partial coordinate
derivatives in a way that is compatible with local gauge invariance. It involves
an infinitesimal parallel transport of the fields. Its use in the equations of
motion leads to characteristic couplings between the fields.

Cross section. Measures the intensity of a particular scattering process in
dependence of its energy, scattering angle, and possibly other characteristics
such as polarizations.

Curved spacetime. The dynamical structure of space and time in general
relativity. The curvature depends on the local energy (mass) and momentum
densities, but may also be present in empty spacetime. The geodesics of curved
spacetime define the trajectories of free-falling (pointlike) bodies.

Dark energy. Invisible form of energy accompanied by a negative pressure
whose existence is inferred from an observed acceleration of the expansion of
the Universe. Theories concerning its nature are highly speculative.

Dark matter. Invisible matter within and between the galaxies whose
existence is inferred only from its gravitational effect manifest, e.g., in their
movement. Dark matter is estimated to make up about 25% of the total energy
content of the Universe (visible “baryonic” matter < 5%, dark energy 70%).
Candidates for non-baryonic dark matter are, e.g., weakly interacting massive
particles (WIMPs).
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Decoherence. The emergence of classical behaviour for a quantum system
through the irreversible interaction with its environment. It allows to explain
in the framework of quantum mechanics why under certain conditions the
typical quantum correlations are unobservable.

Deep inelastic scattering. High energy scattering processes between
leptons and hadrons with large energy–momentum transfer and the produc-
tion of many secondary particles. Because strong interaction is suppressed
at very high energies (asymptotic freedom), in this regime, it can be treated
perturbatively.

Electroweak interaction. The dynamical theory unifying the electro-
magnetic and weak interactions of leptons and quarks, formulated in the stan-
dard model as a gauge theory with gauge group U(1) × SU(2). The SU(2)
gauge transformations act in a parity-asymmetric way. The gauge quanta are
the photon and massiveW (charged) and Z (neutral) bosons. At low energies,
the electromagnetic and the weak interactions separate.

Entanglement. The non-local nature of generic quantum states that de-
scribe a composite system. It entails the impossibility in general of assigning
a pure state to a subsystem.

Euclidean quantum field theory. An approach to QFT which exploits
a formal similarity with statistical mechanics (Statistical Field Theory) if
“time” is replaced by an imaginary parameter. Functional integrals become
mathematically more tractable in this setting. The transition to imaginary
time is justified by locality and positivity of the energy in the real-time QFT;
the transition back is possible under suitable conditions via the “Osterwalder–
Schrader reconstruction”.

Fermions. Particles obeying Fermi–Dirac statistics requiring antisymme-
try of the state vector under interchange of particles, leading to the Pauli
exclusion principle. In quantum field theory described by Fermi fields which
anticommute at spacelike separation; they necessarily have half-integer spin.

Friedmann–Robertson–Walker–Lemâıtre cosmology. Models of the
long-time evolution of the Universe based on the assumptions of spatial ho-
mogeneity and isotropy. They are at the basis of the standard Cosmological
Model.

Functional methods. Allow manipulations of the generating functional
(correspondingly, the path integral) for the computation of scattering ampli-
tudes, convenient to exhibit symmetries and other general structures, and to
control the renormalization. Being rigorously justified in lattice field theory,
they form the cornerstone of non-perturbative quantum field theory.

Gauge principle. The geometric principle underlying gauge theories, ac-
cording to which internal degrees of freedom at different spacetime points
cannot be directly compared, but only through the intervention of a parallel
transport between the two points. The latter is described by a gauge field
carrying the gauge information from point to point, generalizing the scalar
and vector potentials of electrodynamics.
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Gauge theory. A quantum field theory in which the interactions are
determined by the gauge principle. Here typically charged particles interact
through the exchange of vector bosons. All fundamental interactions of the
standard model are described by gauge theories.

Gauge transformations. Redefinitions of the fields according to some
representation of a (gauge) group. In a gauge symmetric theory the observables
are invariant under such transformations. Local gauge transformations can act
arbitrarily at each spacetime point.

General Relativity. Einstein’s classical theory of gravitation, based on
the local indistinguishability of inertial and gravitational forces. The gravita-
tional field is described by the curvature of spacetime, dynamically coupled
to energy and momentum of matter. General relativity is also the basis of
cosmological models.

GeV. See MeV.
Gluons. The gauge bosons of quantum chromodynamics. Since they have

a colour charge they also interact directly with each other (in contrast to an
abelian gauge theory such as QED).

Grand Unified Theories (GUTs). Models designed to unite the elec-
troweak and the strong interactions of the standard model into one interaction
with a single coupling constant, obtained as convergence point of the running
coupling constants of the standard model. GUTs are usually based on simple
gauge groups containing U(1) × SU(2) × SU(3) (the group of the standard
model).

Gravitation. The extremely weak gravitational interaction dominates all
other forces at macroscopic distance scales because it cannot be shielded.
General relativity, the successful theory of classical gravitation and continuum
spacetime, must break down at the Planck scale, where the gravitational field
of quantum fluctuations of the energy would be strong enough to form a black
hole and thus essentially affect the structure of spacetime.

Gravitational waves. Solutions of the gravitational field equations in
the vacuum in the weak field approximation, describing small perturbations
of flat spacetime propagating at the speed of light.

Ground state. A state of lowest energy in quantum theory, e.g., a non-
excited particle in quantum mechanics, or the vacuum state in quantum field
theory. The existence of a ground state is required to ensure the stability of a
system.

Hamiltonian. The observable (usually with the meaning of “energy”)
that generates the time evolution of a dynamical system. Classically it can be
derived from the action functional and vice versa.

Hawking radiation. A semiclassical treatment of quantum field theory
in the vicinity of a black hole predicts that the latter emits thermal radiation
of a temperature inversely proportional to the mass. (See Bekenstein entropy.)

Higgs mechanism. In the standard model, the gauge bosons of the weak
interaction are given a mass by coupling them to the scalar Higgs field, whose
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potential has a non-trivial minimum away from zero. This procedure is com-
patible with gauge symmetry, while explicit mass terms would destroy it.

Hilbert space. The space of state vectors in quantum theory, equipped
with a scalar product representing transition amplitudes. In quantum mechanics,
a state vector can be given as a wave function concerning some degree of free-
dom of a system, while typical state vectors in quantum field theory have an
interpretation in terms of asymptotic multiparticle states.

Hubble expansion. The expansion of the Universe observed by means
of the flight velocity of distant galaxies. The “Hubble parameter” is given by
speed over distance, its inverse is related to the age of the Universe in the Big
Bang model.

Inflation. A class of models stipulating a period of extremely rapid ex-
pansion of the early Universe, required to solve problems (flatness problem,
horizon problem) arising with the Friedmann–Robertson–Walker–Lemâıtre
cosmology.

Lagrangian. See Action functional.
Lattice approximation. An approximation to quantum field theory by

a theory in which Euclidean spacetime is replaced by a discrete lattice. Basis
for the constructive approach and non-perturbative analysis because it allows
to give a precise meaning to the path integral. Especially useful in gauge theo-
ries, because the approximation preserves gauge invariance. Allows numerical
determination of hadronic properties, such as their mass spectrum and weak
decay matrix elements.

MeV. Convenient unit of energy and mass (MeV/c2) in high-energy
physics. 1 MeV = 106eV where 1 eV is the energy an electron acquires when
it runs through an electric potential difference of 1 V, 1 eV =1.602× 10−19 J.
1 GeV/c2 = 1000 MeV/c2 is close to the mass of the proton.

Newton’s constant. The fundamental constant of nature G ≈ 6.67 ·
10−11Nm2/ kg2 determining the strength of the gravitational interaction.

Non-abelian. A group of non-commuting transformations is called non-
abelian, e.g., three-dimensional rotations. The weak and strong interactions
are gauge theories with non-abelian gauge groups.

Non-perturbative renormalization. The procedure to define func-
tional integrals, and thus to rigorously construct quantum field theories, start-
ing from well-defined approximating measures, e.g., provided by lattice field
theory.

Parallel transport. The prescription required to compare field ampli-
tudes in a gauge theory (points in a vector bundle) at different spacetime
points with each other. Necessary prerequisite to define a gauge covariant
derivative.

Particles. The classical notion of a (point) particle represents a distin-
guishable object (mass point) possessing a well-defined trajectory. Both these
properties are lost already in quantum mechanics; in quantum field theory
particles manifest themselves as localized carriers of energy and momentum
showing up in the asymptotics of scattering processes.
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Perturbation theory. Originating from celestial mechanics, perturba-
tion theory is the systematic approximation to an interacting theory obtained
by regarding the interaction as a (small) perturbation of an exactly solved
(usually: free) theory. Perturbation theory provides divergent, at best asymp-
totic expansions in QFT and fails when the coupling constant is large, e.g., in
quantum chromodynamics at low energies.

Planck scale. The length and mass scales lP = (G�/c3)
1
2 ≈ 10−35 m,

mP = �/clP ≈ 1019 GeV/c2 obtained by combination of the fundamental
constants of nature c (speed of light), � (Planck’s constant), and G (Newton’s
constant). It roughly represents the scale at which quantum mechanical lo-
calization uncertainty becomes comparable with the gravitational black hole
horizon and where, therefore, phenomena of quantum gravity are expected to
show up.

Planck’s constant. The fundamental unit of action h = 2π� ≈ 6.6262×
10−34 Js in quantum mechanics. It sets the scale of the Heisenberg uncertain-
ties Δp ·Δx ≥ �/2, of energy quanta (E = h ·ν for photons), and of quantized
angular momentum L ∼ �.

Power counting. A simple method to decide the possibility of perturba-
tive renormalization by determining the degree of UV singularities.

Principle of Causality. Postulates the absence of inacceptable causal
paradoxa due to superluminal propagation of signals or causal influences. In
quantum field theory, this principle is implemented by requiring that observ-
ables localized at spacelike distance commute; in the Lagrangian formulation
this means that the interaction has to be local.

Principle of Equivalence. Transcending the empirical equality of iner-
tial and gravitational mass, this principle asserts the local indistinguishability
between inertial and gravitational forces. It provides the physical basis of
general relativity.

Principle of general relativity. Various versions of postulates about
the formal structure of field theories such that they comply, if coupled to
gravity, with the Principle of Equivalence.

Principle of locality. See Principle of Causality.
Probability amplitude. In quantum mechanics the complex value of the

wave function, whose modulus squared gives the probability per volume of
finding a particle in some region of position or momentum space. In quantum
field theory a complex number whose modulus squared gives the probability
per phase space volume of finding a particular outgoing state in a scattering
process.

QCD, Quantum Chromodynamics. The dynamical theory of quarks
and gluons describing the strong interaction. Its fundamental field quanta
do not arise as particles (confinement), but become almost free at very high
interaction energies (asymptotic freedom). Its gauge group is SU(3).

QED, Quantum Electrodynamics. The dynamical theory of quantized
electrons and photons (electromagnetic fields). Prototype of a gauge theory.
Its gauge group is the (abelian) group U(1).
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Quantum Gravity. Fundamental theory which accomodates the gravita-
tional interaction into the quantum framework. It should be mainly relevant
for understanding the early universe and the fate of black holes and the dy-
namics of gravitation near the Planck scale. This theory is still elusive.

Quantum probability. Knowledge of a quantum state does not in gen-
eral predict the outcome of an individual measurement but the expectation
values (averages) of observables in a large set of measurements on identically
prepared systems, by providing corresponding probabilities.

Quarks. The quanta of the matter fields in quantum chromodynamics,
coupled to the gluons (gauge fields). While they are not observable as isolated
particles (confinement), quarks (and gluons) can in some sense be regarded
as constituents of hadronic particles.

Relativity. The independence of the laws of nature on the state of motion
of the system or of the observer. If this is required only for reference frames
in uniform motion (inertial systems) and if the speed of light does not depend
on the reference frame, it is called special relativity; if there is no such dis-
tinguished speed, Galilean relativity. In general relativity this independence
extends to any reference frame by incorporating gravity.

Renormalization. The systematic treatment to express the observables
of a theory with the help of physical (renormalized) parameters – couplings,
masses, field strengths. In this way one can extract finite quantities from a
theory that predicts divergent results in terms of its unobservable “bare”
parameters, by absorbing the singular behaviour in the bare parameters
themselves.

Scattering processes. Most experiments in high-energy physics proceed
by scattering particles off each other, thereby producing new particles. The
comparison of the ingoing and outgoing states tests the underlying dynamical
theory.

Special Relativity. See Relativity.
Spontaneous symmetry breaking. Occurs when the ground state of a

dynamical system does not exhibit the full symmetry of the dynamics itself
(the action functional or the equations of motion).

Strong interaction. The dynamics of hadronic particles leading to the
cohesion of nuclei and the decay processes with very short lifetimes (∼ 10−23

sec or less). Described by quantum chromodynamics.
Superposition Principle. The characteristic feature of quantum states

to allow linear combinations of state vectors to describe new states. It leads
to constructive and destructive interference of probability amplitudes.

Supersymmetry. A generalized symmetry concept involving transfor-
mations which mix fermionic and bosonic fields. While supersymmetry is
often a desirable feature in quantum field theory for theoretical reasons
(renormalizability), it is not (yet?) observed in the experiment. Hence, if it is
part of a fundamental theory, it must be broken by some unknown mechanism.

Ultraviolet singularities. The apparent prediction that the exchange
of high-energy (“UV”) quanta gives infinite contributions to an interaction.
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It occurs because products of fields at the same point are mathematically
ill-defined. Renormalization is designed to remedy these singularities.

Vector bundle. The geometrical notion of the space of field configurations
in a gauge theory. In every point of the base space (spacetime), a vector space
describes the possible values of a field at that point. Relations between vectors
at different base points are specified by parallel transport or its infinitesimal
version, a connection.

Violation of parity. The characteristic feature of the weak interaction
is its maximal violation of parity (left-right symmetry). It is implemented
in the standard model by the asymmetric (“chiral”) action of SU(2) gauge
transformations, acting only on the fermions with left-handed helicity.

Weak interaction. The dynamics of particles responsible for “slow” pro-
cesses such as radioactive β-decay (typical times from 103 sec (neutron) to
10−13sec (τ lepton)).

Yang–Mills theory. Prototype of a non-abelian gauge theory describing
only the self-interaction of gauge fields resulting from the non-trivial covariant
derivative used in the kinetic term of the action.

Yukawa interaction. A model for short-range interactions mediated by a
massive scalar particle. In the standard model, Yukawa couplings of the Higgs
field to fermions give mass to the latter.
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